Abstract:
A method includes exposing an alignment material to an interference pattern to cause a chemical reaction in the alignment material and exposing the alignment material to a liquid crystal, where the liquid crystal aligns relative to the alignment material based on the interference pattern.
Abstract:
An alignment structure useful in a liquid crystal display device comprising a substrate having disposed thereon an oriented film of a lyotropic nematic liquid crystalline material. Particularly useful lyotropic materials include a class of nematic liquid crystalline compounds known as chromonics. The substrates can be made by coating the lyotropic liquid crystal material onto the substrate to provide an oriented film of the lyotropic material. The alignment structure can also include one or more polarizing dyes or other additives and can thus be made to perform polarizing, retarding and/or color filtering functions in addition to alignment and orientation functions. Optical devices containing such alignment structures and methods of making such devices are also described.
Abstract:
Fluorine-containing, chiral liquid crystal compounds comprise (a) a chiral fluorochemical terminal portion containing at least one methylene group and optionally containing at least one catenary ether oxygen atom; (b) a saturated, chiral or achiral, hydrocarbon terminal portion; and (c) a central core connecting the terminal portions. The compounds have smectic mesophases or latent smectic mesophases and are useful, for example, in liquid crystal display devices.
Abstract:
A process for controlling the cone tilt angle of a tilted smectic liquid crystal composition comprises the step of combining (a) at least one liquid crystal composition comprising at least one smectic or latent smectic liquid crystal compound comprising (i) an aliphatic fluorocarbon terminal portion comprising a terminal fluoroalkyl or fluoroether group and an alkylene group having at least two carbon atoms and containing at least one catenary ether oxygen atom, (ii) an aliphatic hydrocarbon terminal portion, and (iii) a central core connecting the terminal portions; and (b) at least one liquid crystal composition comprising at least one smectic or latent smectic liquid crystal compound; with the provisos that at least one of the compositions (a) and (b) comprises at least one chiral liquid crystal compound and that the combining of compositions (a) and (b) provides an optically active, tilted chiral smectic liquid crystal composition. The process enables control of cone tilt angle and thereby control of the brightness characteristics of liquid crystal display devices.
Abstract:
Fluorine-containing liquid crystal compounds comprise a fluorocarbon terminal portion having at least one catenary ether oxygen and a hydrocarbon terminal portion, the terminal portions being connected by a central core. The compounds have smectic or latent smectic mesophases.
Abstract:
Fluorine-containing, chiral liquid crystal compounds comprise (a) an aliphatic fluorocarbon terminal portion containing at least two catenary ether oxygen atoms; (b) a chiral, aliphatic hydrocarbon terminal portion; and (c) a central core connecting the terminal portions. The compounds have smectic mesophases or latent smectic mesophases and are useful, for example, in liquid crystal display devices.
Abstract:
Fluorine-containing liquid crystal compounds are provided. The compounds comprise a fluorocarbon terminal portion having at least one catenary ether oxygen and a hydrocarbon terminal portion, the terminal portion being connected by a central core, the compounds having smectic mesophases or having latent smectic mesophases.
Abstract:
A transparent electrode is described and includes metallic nanowires and a polymeric overcoat layer for protecting the nanowires from corrosion and abrasion. The polymeric overcoat layer includes nanoparticles selected from the group consisting of antimony tin oxide, zinc oxide and indium tin oxide, and has a sheet resistance of greater than about 107 ohm/sq. The transparent electrode can be used in electronic displays such as polymer-dispersed liquid crystal, liquid crystal, electrophoretic, electrochromic, thermochromic, electroluminescent and plasma displays.
Abstract:
An optical body includes a substrate and a cholesteric liquid crystal layer disposed on the substrate. The cholesteric liquid crystal layer has a non-uniform pitch along a thickness direction of the layer and comprises a crosslinked polymer material that substantially fixes the cholesteric liquid crystal layer. The crosslinking hinders diffusion of cholesteric liquid crystal material within the cholesteric liquid crystal layer. In other methods of making an optical body, a reservoir of chiral material is provided during the process over a first cholesteric liquid crystal layer to diffuse into the layer and provide a non-uniform pitch. Alternatively, two coating compositions can be disposed on a substrate where the material of the first coating composition is not substantially soluble in the second coating composition.
Abstract:
The method of making an optical body includes coating a mixture that includes a plurality of cholesteric liquid crystal compositions, and a solvent on a substrate. Each cholesteric liquid crystal composition is different. A plurality of layers is formed on the substrate. Each layer includes a majority of one of the cholesteric liquid crystal compositions.