Abstract:
The present disclosure relates to an integrated wafer processing apparatus for fabricating semiconductor chips. This integrated wafer processing system combines the lithography patterning steps and irradiation curing steps of the patternable dielectric into one system. The patternable low-k material of the present disclosure also functions as a photoresist, i.e. is a photo-patternable low-k dielectric material.
Abstract:
A method to fabricate interconnect structures that are part of integrated circuits and microelectronic devices by utilization of an irradiation to remove and clean a sacrificial material used therein is described. The advantages of utilizing the irradiation to remove the sacrificial material include reduced damage to interlayer dielectric layers that result in enhanced device performance and/or increased reliability.
Abstract:
The present invention provides a method of fabricating an airgap-containing interconnect structure in which a patternable low-k material replaces the need for utilizing a separate photoresist and a dielectric material. Specifically, this invention relates to a simplified method of fabricating single-damascene and dual-damascene airgap-containing low-k interconnect structures with at least one patternable low-k dielectric and at least one inorganic antireflective coating.
Abstract:
An interconnect structure and method of fabricating the same in which the adhesion between a chemically etched dielectric material and a noble metal liner is improved are provided. In accordance with the present invention, a chemically etching dielectric material is subjected to a treatment step which modified the chemical nature of the dielectric material such that the treated surfaces become hydrophobic. The treatment step is performed prior to deposition of the noble metal liner and aides in improving the adhesion between the chemically etched dielectric material and the noble metal liner.
Abstract:
A low-k dielectric material with increased cohesive strength for use in electronic structures including interconnect and sensing structures is provided that includes atoms of Si, C, O, and H in which a fraction of the C atoms are bonded as Si—CH3 functional groups, and another fraction of the C atoms are bonded as Si—R—Si, wherein R is phenyl, —[CH2]n— where n is greater than or equal to 1, HC═CH, C═CH2, C≡C or a [S]n linkage, where n is a defined above.
Abstract:
A method. The method includes dip coating a film of a composition on a silicon wafer substrate. The composition includes a polymer blend of a first polymer and a second polymer. The first polymer is a substituted silsesquioxane copolymer. The second polymer is a polysilsesquioxane having silanol end groups. The composition includes a photosensitive acid generator, an organic base, and an organic crosslinking agent. The film is patternwise imaged and at least one region is exposed to radiation having a wavelength of about 248 nanometers. The film is baked, resulting in inducing crosslinking in the film. The film is developed resulting in removal of base-soluble unexposed regions of the film, wherein a relief pattern from the film remains. The relief pattern is cured at a temperature between about 300° C. and about 450° C., and the curing utilizes a combination of thermal treatment with UV radiation.
Abstract:
A mechanically robust semiconductor structure with improved adhesion strength between a low-k dielectric layer and a dielectric-containing substrate is provided. In particular, the present invention provides a structure that includes a dielectric-containing substrate having an upper region including a treated surface layer which is chemically and physically different from the substrate; and a low-k dielectric material located on a the treated surface layer of the substrate. The treated surface layer and the low-k dielectric material form an interface that has an adhesion strength that is greater than 60% of the cohesive strength of the weaker material on either side of the interface. The treated surface is formed by treating the surface of the substrate with at least one of actinic radiation, a plasma and e-beam radiation prior to forming of the substrate the low-k dielectric material.
Abstract:
Methods to form interconnect structures utilizing sacrificial filling material layers are described herein. Utilizing the sacrificial filling material makes it possible to reduce damage to interlayer dielectric layers that result in enhanced device performance and/or increased reliability.
Abstract:
In the back end of integrated circuits employing low-k interlevel dielectrics, etched structures are filled with a planarizing material comprising a cyclic olefin polymer and solvent; the next pattern to be etched is defined in a photosensitive layer above the planarizing layer; the pattern is etched in the dielectric and the planarizing material is stripped in a wet process that does not damage the interlevel dielectric.
Abstract:
A nonpolymeric silsesquioxane is provided wherein at least one silicon atom of the silsesquioxane is directly or indirectly bound to an acid-cleavable substituent RCL. The silsesquioxane has a glass transition temperature Tg of greater than 50° C, and the RCL substituent can be cleaved from the silsesquioxane at a temperature below Tg, generally at least 5° C. below Tg. The remainder of the silicon atoms within the silsesquioxane structure may be bound to additional acid-cleavable groups, acid-inert polar groups RP, and/or acid-inert nonpolar groups RNP. The nonpolymeric silsesquioxane can be a polyhedral silsesquioxane optionally having one to three open vertices, such that the polyhedron appears to be a “partial cage” structure, or a macromer of two to four such polyhedral silsesquioxanes. Photoresist compositions containing the novel nonpolymeric silsesquioxanes are also provided, as is a method for using the compositions in preparing a patterned substrate.