Abstract:
There is described a method wherein through holes of a wall are treated on a inside, and wherein one respective pole electrode is assigned to each through hole that is to be processed.
Abstract:
The invention relates to a method for producing a layer (110) having nanoparticles (40), on a substrate (100). The invention is based on the object of specifying a method for producing a layer containing nanoparticles, which method can be carried out particularly easily and nevertheless offers a very wide degree of freedom for the configuration and the composition of the layer to be produced. According to the invention, this object is achieved in that nanoparticles (40) are released and a nanoparticle stream (50) is produced in a first process chamber (10), the nanoparticle stream (50) is passed into a second process chamber (80), and the nanoparticles (40) are deposited on the substrate (100) in the second process chamber (80).
Abstract:
Method for removing coatings which have been applied to components such as turbine blades. After the end of the product life cycle of the turbine blades has been reached, these coatings can be removed to reuse the turbine blades after recoating. The coating, containing in particular chromium oxide compounds is removed via a stripping bath by adding alkanolamine compounds or salts containing such compounds as the inhibitor. These compounds advantageously prevent new chromium oxide compounds from being produced during the stripping of the turbine blades or the chromium oxide compounds present in the coating are removed effectively, so that the chromium oxide compounds cannot have an adverse influence on the removal rate of the stripping process. Advantageously reduced treatment times can thereby be achieved for the stripping process. By adding 2% triethanolamine, the treatment time in hydrochloric acid for example can be reduced to below one hour.
Abstract:
The invention relates to a process for cleaning passages in workpieces, in particular cooling-air passages in turbine components, such as transition pieces or turbine blades or vanes, wherein the workpiece having the passages is immersed in a liquid bath and a liquid is suddenly forced under pressure through the passages.
Abstract:
Masking layers for components according to the prior art react with the base material of the component and/or are difficult to remove again. The component according to the invention has a masking layer which can very easily be removed following coating of the components, since on the one hand the bonding between the masking layer and the base material of the component is poor, or the masking layer can easily be removed through penetration of a liquid.
Abstract:
Cracks are conventionally difficult to clean which often leads to damage to other regions of the component for cleaning. According to the invention, a plasma cleaning method is used, whereby a pressure and/or a separation of an electrode to the component are varied, in order to achieve a plasma cleaning in the crack.
Abstract:
Masking layers for components according to the prior art react with the base material of the component and/or are difficult to remove again. The component according to the invention has a masking layer which can very easily be removed following coating of the components, since on the one hand the bonding between the masking layer and the base material of the component is poor, or the masking layer can easily be removed through penetration of a liquid.
Abstract:
In prior art, through holes often have to be after-treated manually. Disclosed is a method allowing through holes to be after-treated in a chemical or electrochemical manner with the aid of a material-removing agent, the outer surface located around a discharge port of the through hole being protected accordingly from being attacked by the agent that is to be removed.
Abstract:
Prior art methods for removing a layer area of a component (stripping) lead to poor results since a removal, for example, ensues in a nonuniform manner. In addition, these prior art methods are time intensive. An inventive method for removing a layer area of a component consists of firstly treating the layer areas to be removed with a salt solution and then with acid, whereby in an intermediate or final step, the component is treated with a complexing agent.
Abstract:
Components which are subject to operating loads can often be passed for refurbishment by means of an acid treatment. The time for which the components remain in the acid has hitherto been determined empirically, which means that individual loads are not taken into account. The process according to the invention for the surface treatment of a component proposes that at least repeatedly a measurement voltage be applied to the component, resulting in the flow of a current, the time profile of which represents the state of the surface treatment and is used to decide upon when to terminate or interrupt the acid treatment.