Abstract:
A stacked-chip apparatus includes a package substrate and an interposer with a chip stack disposed with a standoff that matches the interposer. A package-on-package stacked-chip apparatus includes a top package disposed on the interposer.
Abstract:
One embodiment relates to forming a plurality of vias extending partially through a body, the vias including sidewalls defined by the body. An insulating layer is formed on the sidewalls and on an upper surface of the body. An electrically conductive layer is formed on the insulating layer, the electrically conductive layer defining first metal pads on the upper surface and second metal pads in contact with the first metal pads, the second metal pads having a denser pitch than the first metal pads. A dielectric layer is formed between adjacent first metal pads and between adjacent second metal pads. A plurality of electronic elements are coupled to the second metal pads. After the coupling the elements, the body is thinned through a lower surface. A portion of the insulating layer in the vias is removed and the electrically conductive layer is coupled to a substrate.
Abstract:
Embodiments of the invention provide a first component with a compliant interconnect bonded to a second component with a land pad by a metal to metal bond. In some embodiments, the first component may be a microprocessor die and the second component a package substrate.
Abstract:
Embodiments of the invention provide a device with a die and a substrate having a similar coefficient of thermal expansion to that of the die. The substrate may comprise a silicon base layer. Build up layers may be formed on the side of the base layer further from the die.
Abstract:
In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
Abstract translation:在本发明中,提供了半导体器件,例如在n型ZnO和Mg x 1 Zn 1-x O O外延膜上制造的肖特基UV光电探测器。 ZnO和Mg x Zn 1-x O薄膜生长在R平面蓝宝石衬底上,肖特基二极管制造在ZnO和Mg < 分别使用银和铝作为肖特基和欧姆接触金属的ZnO 1-x O O膜。 肖特基二极管具有圆形图案,其中内圆是肖特基接触,外环是欧姆接触。 Ag肖特基接触图案使用标准剥离技术制造,而Al欧姆接触图案是使用湿化学蚀刻法形成的。 与其感光对手相比,这些检测器显示低频光响应,高速光响应,较低的漏电流和低噪声性能。 本发明还可应用于光学调制器,金属半导体场效应晶体管(MESFET)等。
Abstract:
A compliant interconnect is described that is useful for coupling semiconductor dies to other components. In one embodiment, the interconnect includes a base to couple to a first component and an arch extending from and integral with the base to couple to a second component. The interconnect may be formed by coating a substrate with photoresist, exposing the photoresist with a defined pattern, developing the photoresist, baking the photoresist at a first temperature for a first amount of time to reflow the photoresist, and baking the photoresist at a second higher temperature for a second amount of time to reflow the photoresist.
Abstract:
A method for forming a composite metal layer on a substrate comprises providing nanocrystalline particles of a first metal, adding the nanocrystalline particles to a plating bath that contains ions of a second metal to form a colloid-like suspension, immersing the substrate in the plating bath, and causing a co-deposition of the second metal and the nanocrystalline particles of the first metal on the substrate to form the composite metal layer. The co-deposition may be caused by inducing a negative bias on the substrate and applying an electric current to the plating bath to induce an electroplating process. In the electroplating process, the ions of the second metal are reduced by the substrate and become co-deposited on the substrate with the nanocrystalline particles of the first metal to form the composite metal layer.
Abstract:
Embodiments of the invention provide a first component with a compliant interconnect bonded to a second component with a land pad by a metal to metal bond. In some embodiments, the first component may be a microprocessor die and the second component a package substrate.