Abstract:
The use of white space devices in unused portions of the television channel spectrum is facilitated by spectrum sensing techniques that combine interference rejection techniques with feature extraction techniques to detect presence or absence of incumbent users in the spectrum.
Abstract:
Certain aspects of the present disclosure provide techniques for detecting presence of a Bluetooth device in the vicinity of a WiFi device by sensing the spectrum of the Bluetooth device using a sequence of energy detection measurements, generating a test statistic based on the measurements and comparing the test statistic to a threshold.
Abstract:
A statistical basis for use in a self-scanning checkout system determines how many items to check in a shopper's shopping cart for incorrect or missing scans as well as which particular or types of items to check to determine if they were properly scanned, if the shopper is determined to be audited. The present invention does not audit every customer, but rather determines whether a given shopper or customer is to be audited on a given shopping trip based upon obtaining a minimum checkout loss for such customer. The methodology determines how many items to check for a given shopper as well as which particular items to check for that shopper. The following factors attempt to model the real world of shopping and may be considered, alone or in varying combinations, in determining the number of items to check for a particular shopping transaction: shopper frequency; queue length; prior audit history; store location; time of day, day of week, date of year; number of times items are returned to shelf during shopping; dwell time between scans; customer loyalty; store shopping activity and other factors. Using statistical decision theory for auditing policies a minimum loss per shopper transaction improves the security and reduces the labor of self-check out without being too intrusive to customers.
Abstract:
Methods and apparatus for determining if a signal of interest, for example, a licensed signal having or exceeding a predetermined field strength, is present in a wireless spectrum and/or which facilitates such a determination are described. The signal of interest maybe, e.g., a television signal or a wireless microphone signal using licensed television spectrum. The predetermined field strength may be specified or by a government regulation or rule.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for operating in a television white space (TVWS) network. One example method generally includes receiving, at an apparatus, a message with a field indicating a current version of an unused frequency spectrum map (e.g., a white space map (WSM)), the unused frequency spectrum map indicating channels usable for wireless communications; determining whether the current version of the unused frequency spectrum map is different than a previous version of the unused frequency spectrum map; and using a channel for wireless communications based on the determination. Another example method generally includes accessing a database of available channels for a current location of an apparatus via a neighboring portable or fixed enabling apparatus and enabling one or more portable dependent apparatuses for the wireless communications via one or more of the available channels.
Abstract:
A decentralized approach to peer discovery channel selection is used in some embodiments. In some such embodiments, a mobile wireless terminal supporting a peer to peer signaling protocol, independently determines what channels to use for peer discovery without a central controller indicating the channel or channels to be used. Assuming channels are of a suitable quality, the channels having the best quality need not be identified, with channel selection being made on a predetermined channel ordering basis from those with suitable quality. Different wireless communications devices in the system use the same peer discovery channel selection process making it likely that the same channel or channels will tend to be picked to be used for peer discovery. Other embodiments are directed to implementing a centralized approach to peer discovery channel selection in which a central controller or base station selects channels to be used for peer discovery signaling.
Abstract:
In general, techniques are described for sensing wireless communications in television frequency bands, which may be implemented by a sensing device comprising a sensing unit, a power spectral density (PSD) estimation unit, a filter unit, a candidate selection unit, an analysis unit and a decision unit. The sensing unit senses a signal in the television frequencies bands. The PSD estimation unit calculates an estimate of a PSD for the sensed signal. The filter unit filters the estimated PSD. The candidate selection unit analyzes the filtered PSD to identify a candidate frequency representative of a potentially in use frequency. The analysis unit computes a test statistic for the candidate frequency. The decision unit compares the test statistic to a threshold to identify whether the candidate frequencies is actively in use by wireless communication devices.
Abstract:
White space signals are differentiated from licensed ATSC signals through modification of a waveform of the white space signal. White space signals may be modified by shifting the ATSC-compatible waveform so that the pilot frequency of the white space signal is at a location outside of the frequency range associated with the pilot frequency in a licensed ATSC signal or embedding a watermark signal into said ATSC-like white space signals. White space device transmitters generate the signals with these modifications and white space receivers are equipped to detect whether a pilot exists in the standard licensed pilot frequencies. Based on these differences, white space devices can better operate without interfering with licensed ATSC transmission. Additionally, the modification techniques may be used to embed data in the white space signal that may be used to communicate connection data or networking data to other white space devices.
Abstract:
An apparatus for wireless communication includes a processing system. The processing system is configured to estimate a power spectral density of a first signal. In addition, the processing system is configured to determine a normalized correlation detector between the estimated power spectral density and a known power spectral density of a second signal. Furthermore, the processing system is configured to determine whether the first signal contains the second signal based on the normalized correlation detector.
Abstract:
A spatio-temporal random voting scheme is provided that incorporates location distribution, spatial randomness, and temporal randomness in the collection of information from a plurality of sensing devices within the cognitive network. The region is divided into a plurality of sectors, where each sector is a portion of the region. A subset of sectors is selected from the plurality of sectors in the region to provide spatial randomness. A device is randomly selected from each sector in the subset of sectors to provide additional spatial randomness to the information collection process. Temporal randomness may be introduced by randomly selecting a timeslot within a sensing window period in which devices are to scan a frequency spectrum band to determine if a signal energy above a threshold is detected. Sensing reports are then collected from the selected sensing devices and used to determine whether the frequency spectrum band is available or in use.