Abstract:
This device comprises a drum (42) to be driven in rotation about a central axis (B-B′), wherein the drum (42) defines a circumferential casing (50) for winding the elongate element around the central axis (B-B′), wherein the elongate element is intended to form at least one turn around the central axis (B-B′) on the circumferential casing (50). It comprises a mechanism (44) for driving the turn(s) of the elongate element along the circumferential casing (50). The drive mechanism (44) comprises at least one assembly (80) following movement of the turn in a direction of movement (D) forming a non-zero angle with the local axis of the turn, taken at a contact region of the turn on the movement assembly (80).
Abstract:
A recovery system and method for recovering a deployed vessel having a rotatable support coupled with a stored recovery assembly, including a release unit, line, deployment weight, and drag device on the deployed vessel. A recovery vessel can have a hoist with a coupling element, such as a grapple. For recovery, the recovery assembly can be deployed from the deployed vessel. The drag device can assist in floating and/or maintaining a taut line, especially when the vessel is downwind of the drag device. The coupling element from the recovery vessel can couple with the taut line. Once coupled, the recovery vessel can raise the coupling element with the line, which can rotate the rotatable support to a lifting position above a center of gravity of the deployed vessel. The recovery vessel can then lift the deployed vessel vertically out of the water to a storage position.
Abstract:
The invention relates, on the one hand, to a composite material composition capable of neutralizing acid compounds and of being used under high temperature conditions, said composition being a mixture of a polymer material with a predetermined amount of reactive fillers, the mass fraction of the chemically active products ranges between 4 and 40% and the polymer material is selected from the vinylidene fluoride copolymers family, comprising a vinylidene fluoride monomer, and at least one monomer being selected from among the following monomers: hexafluoropropylene, perfluoro(methylvinyl)ether, perfluoro(ethylvinyl)ether, perfluoro (propylvinyl)ether, tetrafluoroethylene, perfluorobutylethylene, fluoropropylene, chlorotrifluoroethylene, chlorodifluoroethylene, chlorofluoroethylene, trifluoroethylene, and the monomer with the following formulation: CH2═CH—CF2—(CF2)4—CF3 and, on the other hand, to a pipe comprising at least one sheath made from the composite material composition.
Abstract:
A floating offshore platform is disclosed with one or more extension plates fixedly coupled to one or more pontoons on the offshore platform and extending from the pontoons. As the floating platform moves, the pontoon-coupled extension plates separate the water and cause drag on the platform. The water moving with the extension plates also increases the dynamic mass. The added drag and dynamic mass increases the natural period of the motion away from the wave excitation period to minimize the wave driven motion compared to a platform without the extension plates. The extension plates can be coupled to the pontoons during fabrication at the yard directly or through frame members. The extension plates generally are generally located inclusively between the top and bottom elevations of the pontoons, and therefore do not significantly reduce the clearance between the seabed and the hull at the quayside.
Abstract:
An underwater support device and an installation method for initiating the buckling of a section of rigid underwater pipe (16) deployed on a seabed (14). The device has a longitudinal support (22) capable of being installed between the seabed and the section of rigid underwater pipe (16) in a transverse direction, in such a way as to be able to locally detach the section of rigid underwater pipe (16) from the seabed (14) and allow the rigid underwater pipe (16) to be moved relative to said longitudinal support (22) in the direction of the longitudinal support. The device also has a link member (36) to secure the rigid underwater pipe (16) and the longitudinal support (22) in such a way as to be able to install said longitudinal support (22) on the seabed (14) by deploying the section of rigid pipe (26) on the seabed (14).
Abstract:
The present disclosure provides a lateral external sleeve for a riser that can be preinstalled or field installed around the riser as it is deployed onto the seabed and a stress joint installed with the riser and longitudinally partially within the lateral external sleeve. The external sleeve in conjunction with the stress joint can support a laterally deployed riser in an otherwise high stress zone of the riser as it would bend due to changes in elevations and thus reduce stress on the riser. The system can act independently of a buoy-based system typically used in the art.
Abstract:
An underwater connection assembly, and a connection method, for connecting a riser (12) and a flexible pipe (26). The riser (12) has an upper connection end (52) and the flexible pipe (26) has a lower connection end (30). The connection assembly includes a longitudinal frame (36) having a foot (46) rigidly connected to the upper connection end (52) and a head (42) linked to a float (20). A connector (34), and a curved pipe (32) having two opposing ends (62, 64). The opposing end (62) is rigidly connected to the lower connection end (30), and the connector (34) is mounted to the other opposing end (64), to be able to pull the connector (34) towards the upper connection end (52) in a direction oriented from the head (42) to the foot (46).
Abstract:
An offshore hydrocarbon-production umbilical having concentrically: an outer sheath, at least two cross-wound armouring layers, and a core enclosed by the armouring layers, and comprising a plurality of elongate active umbilical components, wherein each armouring layer comprises a plurality of reinforced polymer strips. The use of reinforced polymer strips to form the armouring layers achieves a reduced weight but still flexible arrangement, which is significantly easier to manufacture as far fewer strips are required to form the armouring layers compared with the large number of steel wires of conventional armouring layers.
Abstract:
A method including the following steps: assembling sections of metal tube end-to-end so as to form an inner tube having a continuous passage for circulation of fluid; positioning a thermally insulating sleeve around each section of metal tube, the thermally insulating sleeve comprising at least one longitudinal groove; introducing a continuous functional line into at least two longitudinal grooves in at least two adjacent sections of tube; and filling in each longitudinal groove in order to cover the continuous functional line.
Abstract:
Burner system for a radiant section of a steam cracking furnace configured to provide heat to the radiant section, the burner system including a fuel inlet and an oxidant inlet, and further comprising an ejector block arranged located within the radiant section and to receive a propellant and a propelled fluid and arranged to premix said propellant with said propelled fluid.