Abstract:
A lithographic apparatus comprises comprise a substrate table constructed to hold a substrate; and a sensor configured to sense a position of an alignment mark provided onto the substrate held by the substrate table. The sensor comprises a source of radiation configured to illuminate the alignment mark with a radiation beam, a detector configured to detect the radiation beam, having interacted with the alignment mark, as an out of focus optical pattern, and a data processing system. The data processing system is configured to receive image data representing the out of focus optical pattern, and process the image data for determining alignment information, comprising applying a lensless imaging algorithm to the out of focus optical pattern.
Abstract:
An initialization method including estimating a characteristic of a property of an object based on a plurality of measurements by the sensor of the property using a respective plurality of different measurement parameters, different ones of the measurements using different measurement parameters, the characteristic including a combination of respective outcomes of respective ones of the measurements weighted by a respective weighting coefficient; performing, for each of a plurality of models of the object, each model configured to enable respective simulation of the performing of the measurements, a respective simulation, the respective simulation including simulating the measurements under control of a respective plurality of different simulation parameters to obtain a respective plurality of simulated characteristics of the property, the different simulation parameters being indicative of the different measurement parameters; determining, for each of the models, a respective bias representative of a respective difference between a respective theoretical characteristic of the property in accordance with the respective model and a respective further combination of the simulated characteristics of the property in the respective model, the respective further combination of the simulated characteristics including the weight coefficients, each particular one of the weight coefficients associated with a particular one of the different simulation parameters; using a cost function configured to optimize a correspondence between the simulated characteristic of the property and the theoretical characteristic of the property, the cost function being a function of the respective biases of the models; and optimizing the cost function to derive the weight coefficients from the cost function; and using the weight coefficients and the associated simulation parameters in a controller associated with the sensor.
Abstract:
A property of a target structure is measured based on intensity of an image of the target. The method includes (a) obtaining an image of the target structure; (b) defining a plurality of candidate regions of interest, each candidate region of interest comprising a plurality of pixels in the image; (c) defining an optimization metric value for the candidate regions of interest based at least partly on signal values of pixels within the region of interest; (d) defining a target signal function which defines a contribution of each pixel in the image to a target signal value. The contribution of each pixel depends on (i) which candidate regions of interest contain that pixel and (ii) optimization metric values of those candidate regions of interest.
Abstract:
An alignment sensor including an illumination source, such as a white light source, having an illumination grating operable to diffract higher order radiation at an angle dependent on wavelength; and illumination optics to deliver the diffracted radiation onto an alignment grating from at least two opposite directions. For every component wavelength incident on the alignment grating, and for each direction, the zeroth diffraction order of radiation incident from one of the two opposite directions overlaps a higher diffraction order of radiation incident from the other direction. This optically amplifies the higher diffraction orders with the overlapping zeroth orders.
Abstract:
A lithographic apparatus includes a sensor, such as an alignment sensor including a self-referencing interferometer, configured to determine the position of an alignment target including a periodic structure. An illumination optical system focuses radiation of different colors and polarizations into a spot which scans the structure. Multiple position-dependent signals are detected and processed to obtain multiple candidate position measurements. Asymmetry of the structure is calculated by comparing the multiple position-dependent signals. The asymmetry measurement is used to improve accuracy of the position read by the sensor. Additional information on asymmetry may be obtained by an asymmetry sensor receiving a share of positive and negative orders of radiation diffracted by the periodic structure to produce a measurement of asymmetry in the periodic structure.
Abstract:
Liquid is supplied to a space between the projection system and the substrate by an inlet. In an embodiment, an overflow region removes liquid above a given level. The overflow region may be arranged above the inlet and thus the liquid may be constantly refreshed and the pressure in the liquid may remain substantially constant.
Abstract:
A method for converting a vector-based representation of a desired device pattern for an exposure apparatus, a lithography or exposure apparatus, an apparatus and method to provide data to a programmable patterning device, and a device manufacturing method. In an embodiment, the method for converting outputs a rasterized representation of the desired dose pattern of radiation corresponding to the desired device pattern, wherein the vector-based representation includes primitive data identifying one or more primitive patterns; and instance data identifying how at least a portion of the desired device pattern is formed from one or more instances of each identified primitive pattern, the method including forming a rasterized primitive of each primitive pattern identified in the primitive data, and forming the rasterized representation by storing each rasterized primitive in association with the instance data corresponding to that rasterized primitive.
Abstract:
Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and a heater.