Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
Abstract:
A rare-earth-containing glass material having a composition, expressed in mole percentages on and oxide basis, comprising: SiO2: 66-75 Al2O3: 11-17 B2O3: 0-4 MgO: 1-6.5 CaO: 2-7 SrO: 0-4 BaO: 0-4 Y2O3: 0-4 La2O3: 0-4 Y2O3+La2O3: 0.1-4. The inclusion of Y2O3 and/or La2O3 in the composition reduces the T2.3 of the glass thereby allowing higher annealing-point glasses to be produced. The glass is particularly useful for low-temperature polycrystalline silicon-based semiconductor devices.
Abstract translation:含有以摩尔百分数表示的氧化物组成的含稀土玻璃材料包括:SiO 2 :66-75 Al 2 O 3:11-17 B 2 O 3:0-4 MgO:1-6.5 CaO:2-7 SrO: 0-4 BaO:0-4 Y2O3:0-4 La2O3:0-4 Y2O3 + La2O3:0.1-4。 在组合物中包含Y 2 O 3和/或La 2 O 3减少了玻璃的T2.3,从而允许生产更高的退火点玻璃。 该玻璃对于低温多晶硅基半导体器件特别有用。
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
Abstract:
An aluminum titanate ceramic article having a predominant crystal phase of aluminum titanate and a material composition including aluminum, titanium, silica, an alkaline earth metal (e.g., at least one selected from the group of strontium, calcium, barium, or combinations), and a rare earth metal (e.g., at least one selected from the group consisting of yttrium, lanthanum, and combinations) and methods of making such aluminum titanate bodies are described. An oxide of yttrium metal or lanthanide metals is preferably used as a sintering aid in combination with the other compositional components to enable firing of the resulting green body at a lower heating temperature of less than 1500° C., and more preferably between 1400°-1450° C., with a preferable hold time of less than 8 hours, more preferably of 6 to 8 hours.
Abstract:
A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which −15 mol %≦(R2O+R′O—Al2O3—ZrO2)—B2O3≦4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R′ is one of Mg, Ca, Sr, and Ba.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
Abstract:
A process for making glass sheet with low compaction suitable for high temperature applications, such as low-temperature polysilicon-based TFT displays, and glass sheets thus made. The glass sheet desirably has an anneal point of at least 765° C., a CTE at most 42×10−7/° C. The process involves cooling the glass melt form a temperature corresponding to a viscosity of 1.0×1010 poise to a temperature corresponding to a viscosity of 1.0×1015 poise at a cooling rate CR, where CR≧5° C./second. The absolute value of the measured compaction of the glass sheet desirably is at most 175 ppm upon being re-heated to 675° C. for a period of time.
Abstract:
Aluminoborosilicate glasses which may be useful in photovoltaic, photochromic, electrochromic, or Organic Light Emitting Diode (OLED) lighting applications are described.
Abstract:
A glass that is ion exchangeable to a depth of at least 20 μm (microns) and has a internal region having a tension of less than or equal to 100 MPa. The glass is quenched or fast cooled from a first temperature above the anneal point of the glass to a second temperature that is below the strain point of the glass. In one embodiment, the glass is a silicate glass, such as an alkali silicate glass, an alkali aluminosilicate glass, an aluminosilicate glass, a borosilicate glass, an alkali aluminogermanate glass, an alkali germanate glass, an alkali gallogermanate glass, and combinations thereof.