Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired or associated with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.
Abstract:
When a new version of a first program is to be installed on a first device, metadata supplied to that device specifies which versions of a second program stored on a second device are compatible with the new version. The first device uses this metadata to determine a compatibility classification that indicates how compatible the current version of the second program and the new version of the first program are, and transitions to a state representative of this compatibility classification. A process executing on the first device receives messages from applications executing on the first device. The process reads mappings between these applications and the message types these applications send. The process forwards an application's message to the second device if the application sends a message type allowable in the first device's state. Otherwise, the process queues that message at least until the first device transitions to a different state.
Abstract:
Companion and accessory devices can be wirelessly leashed together in a manner that enables the devices to estimate their proximities to each other. One device can periodically attempt to detect a signal from the other device. For each attempt, the attempting device can store an indication of whether the signal was detected. If a number of times that the signal was undetected exceeds a threshold, then the attempting device can perform specified operations, such as alerting a user that the wireless leash was broken. As another example, one device can detect that a strength of a signal from the other device exceeds a threshold. In response, the detecting device can measure signal strengths more frequently. If the measuring device then detects that the signal strength exceeds another threshold, then the measuring device can cause specified operations to be performed, such as data synchronization between the devices or unlocking a device.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.
Abstract:
Companion and accessory devices can be wirelessly leashed together in a manner that enables the devices to estimate their proximities to each other. One device can periodically attempt to detect a signal from the other device. For each attempt, the attempting device can store an indication of whether the signal was detected. If a number of times that the signal was undetected exceeds a threshold, then the attempting device can perform specified operations, such as alerting a user that the wireless leash was broken. As another example, one device can detect that a strength of a signal from the other device exceeds a threshold. In response, the detecting device can measure signal strengths more frequently. If the measuring device then detects that the signal strength exceeds another threshold, then the measuring device can cause specified operations to be performed, such as data synchronization between the devices or unlocking a device.