Abstract:
A method for monitoring autoregulation includes, using a processor, receiving a blood pressure signal an oxygen saturation signal, and a regional oxygen saturation signal from a patient. The method also includes normalizing the regional oxygen saturation signal to correct for variation in the oxygen saturation signal based on a relationship between the oxygen saturation signal and the regional oxygen saturation signal. The method further includes determining a linear correlation between the blood pressure signal and the normalized regional oxygen saturation signal. The method still further includes providing a signal indicative of the patient's autoregulation status to an output device based on the linear correlation.
Abstract:
A system configured to monitor autoregulation includes a medical sensor configured to be applied to a patient and to generate a regional oxygen saturation signal. The system includes a controller having a processor configured to receive the regional oxygen saturation signal and a blood pressure signal and to determine a cerebral oximetry index (COx) based on the blood pressure signal and the regional oxygen saturation signal. The processor is also configured to apply a data clustering algorithm to cluster COx data points over a range of blood pressures, identify a first cluster of COx data points that corresponds to an intact autoregulation zone for the patient, and provide a first output indicative of the intact autoregulation zone for the patient.
Abstract:
A method for determining an efficacy of cardiopulmonary resuscitation (CPR) includes receiving a plethysmography signal from an oximetry sensor and an electrocardiogram (ECG) signal from an ECG sensor at a processor associated with a patient monitor, the oximetry sensor, or the ECG sensor. The method includes determining a first indicator related to the efficacy of CPR based on the plethysmography signal, using the processor. The method also includes determining a second indicator related to the efficacy of CPR based on the ECG signal, using the processor. The method further includes combining the first indicator and the second indicator to determine a combination metric indicative of the efficacy of CPR, using the processor.
Abstract:
A medical monitoring system includes an oximetry sensor having a light emitter positioned to emit light into a patient and a photodetector positioned to generate a plethysmography signal. The system includes a monitor having a processor configured to receive the plethysmography signal from the oximetry sensor and to identify a non-cardiac pulse based on a first pulse shape metric, the non-cardiac pulse being generated by the administration of cardiopulmonary resuscitation (CPR) to the patient. The processor is also configured to measure an oxygen saturation of the patient from the identified non-cardiac pulse and to output the measured oxygen saturation to a visual display.
Abstract:
Systems and methods provided relate to patient sensors and/or patient monitors that recognize and/or identify a patient with physiological signals obtained from the sensor. A scalogram may be produced by applying a wavelet transform for the physiological signals obtained from the sensor. The scalogram may be a three dimensional model (having time, scale, and magnitude) from which certain physiological information may be obtained. For example, unique human physiological characteristics, also known as biometrics, may be determined from the scalograms. More specifically, monitoring the changes in the morphology of the photoplethysmographic (PPG) waveform transforms (e.g., scalogram) may determine patient-specific information that may be used to recognize and/or identify the patient, and that may be used to determine a proper or improper association between the patient and the wireless sensor and/or patient monitor.
Abstract:
The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
Abstract:
A method for monitoring autoregulation includes receiving a blood pressure signal and an oxygen saturation signal, determining a phase difference between the blood pressure signal and the oxygen saturation signal, and determining a patient's autoregulation status based at least in part on a phase difference between the blood pressure signal and the oxygen saturation signal.
Abstract:
A method for monitoring autoregulation includes, using a processor, receiving a blood pressure signal, a regional oxygen saturation signal, and a blood volume signal from a patient. The method also includes determining a first linear correlation between the blood pressure signal and the regional oxygen saturation signal and determining a second linear correlation between the blood pressure signal and the blood volume signal. The method also includes determining a confidence level associated with the first linear correlation based at least in part on the second linear correlation and providing a signal indicative of the patient's autoregulation status to an output device based on the linear correlation and the confidence level.
Abstract:
Provided are systems and methods for processing a physiological signal in order to detect whether a patient's breathing is being controlled by a ventilator. A signal, such as a photoplethysmograph (PPG) may be processed to determine one or more various metrics indicative of the consistency of the patient's respiration.
Abstract:
The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient may include an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP metric. The monitor also may include a memory storing a relationship between the FRP metric and a pulse pressure variation (PPV) metric. The FRP metric is calculated based on a respiratory variation of the PPG signal and based on the relationship.