Abstract:
An exhaust aftertreatment system includes a selective catalytic reduction (SCR) catalyst is disposed in an exhaust gas system of an internal combustion engine. A reductant injector is coupled to the exhaust gas stream at a position upstream of the SCR catalyst. A controller is configured to determine an NH3 slip condition and control operation of the exhaust aftertreatment system in response to the NH3 slip condition to improve deNOx efficiency and reduce NH3 slip.
Abstract:
Systems and apparatuses include an apparatus including an aftertreatment system control circuit structured to receive a signal indicative of an exhaust gas characteristic from a sensor, determine an aftertreatment system characteristic based on the exhaust gas characteristic, determine an acceptable input value responsive to the aftertreatment system characteristic, and control at least one of a fuel system actuator and an air handling actuator to achieve or substantially achieve the acceptable input value.
Abstract:
An apparatus includes a nitrogen oxide (NOx) module and a selective catalytic reduction (SCR) diagnostic module. The NOx module is in exhaust gas communication with an exhaust flow of an exhaust aftertreatment system from an engine. The NOx module is structured to interpret NOx data indicative of an amount of NOx exiting the engine and an amount of NOx exiting the exhaust aftertreatment system, and determine a NOx conversion efficiency fault is present based on the amount of NOx exiting the engine and the amount of NOx exiting the exhaust aftertreatment system. The SCR diagnostic module is structured to determine at least one of a SCR catalyst and a diesel particulate filter including a coating of a SCR reaction catalyst (DPF-SCR) are responsible for the NOx conversion efficiency fault based on at least one of a reductant slip amount and a NOx conversion value across at least one of the SCR catalyst and the DPF-SCR.
Abstract:
A method includes providing: a selective catalytic reduction (SCR) catalyst disposed in an exhaust gas stream of an internal combustion engine, a reagent injector operationally coupled to the exhaust gas stream at a position upstream of the SCR catalyst, and a NOx sensor coupled to the exhaust gas stream at a position downstream of at least a first portion of the SCR catalyst. The method includes operating an extremum seeking controller to determine a first reagent injection amount corresponding to a predetermined slope of δNOx/δANR, the δNOx/δANR determined according to the NOx sensor, providing a reagent injection command in response to the first reagent injection amount, and injecting an amount of the reagent in response to the reagent injection command.
Abstract:
A system includes an aftertreatment system and a controller coupled to the aftertreatment system. The controller is configured to generate a spatially resolved model of a catalyst of the aftertreatment system. The controller is further configured to adjust the spatially resolved model based on one or more sensed values from at least one sensor upstream of the one or more portions and at least one sensor downstream of the one or more portions.
Abstract:
A system and method of exhaust gas recirculation (EGR) in an internal combustion engine are provided. The EGR system includes a first EGR flow path and a second EGR flow path independent of the first EGR flow path that are each configured to recirculate high pressure exhaust from the exhaust system back to the engine intake system. The system includes a controller in operable communication with the EGR system configured to selectively control an amount of EGR flow through at least one of the first and second EGR flow paths.
Abstract:
An exhaust gas aftertreatment system for an internal combustion engine includes an inlet conduit, a reductant decomposition chamber, a first selective catalytic reduction (SCR) catalyst member, a second SCR catalyst member, a mixing chamber, a particulate filter, a reductant delivery system, and a hydrocarbon delivery system. The inlet conduit is configured to receive exhaust gas from the internal combustion engine. The reductant decomposition chamber is fluidly coupled to the inlet conduit and configured to receive the exhaust gas from the inlet conduit. The first SCR catalyst member is fluidly coupled to the reductant decomposition chamber and configured to receive the exhaust gas from the reductant decomposition chamber. The second SCR catalyst member is fluidly coupled to the first SCR catalyst member and is configured to receive the exhaust gas from the first SCR catalyst member.
Abstract:
Systems and methods to control operation of a system based on aftertreatment interaction include a controller structured to receive one or more parameters associated with an exhaust aftertreatment system of an electric vehicle, where the one or more parameters are associated with an aftertreatment event associated with the aftertreatment system, determine an operation state of the system based on the one or more parameters, and generate a command structured to adjust operation of the system responsive to the determination of the operation state.
Abstract:
An exhaust aftertreatment device includes a housing defining an inlet and an outlet. A plurality of first substrate layers are positioned within the housing in fluid receiving communication with the inlet. The plurality of first substrate layers define a first flow direction, and the plurality of first substrate layers comprise a passive NOx adsorber washcoat. A plurality of second substrate layers are positioned within the housing with the first and second substrate layers being layered in alternating order. The plurality of second substrate layers define a second flow direction perpendicular to the first flow direction, and the plurality of second substrate layers comprise a selective catalytic reduction washcoat. A connecting passage is in fluid receiving communication with the plurality of first substrate layers and in fluid providing communication with the plurality of second substrate layers.
Abstract:
Systems, apparatuses, and methods include an upstream exhaust analysis circuit structured to determine a characteristic of an exhaust gas stream entering a nitrous oxide (NOx) storage catalyst; a prediction circuit structured to predict a downstream NOx concentration of an exhaust gas stream exiting the NOx storage catalyst based on a model of a NOx storage capacity or a dynamic response of the NOx storage catalyst; a downstream exhaust analysis circuit structured to determine a downstream NOx concentration of the exhaust gas stream exiting the NOx storage catalyst; and a comparison circuit structured to compare the predicted downstream NOx concentration to the determined downstream NOx concentration, and determine a health of the NOx storage catalyst based on the comparison.