Abstract:
A surface-emission laser array comprises a plurality of surface-emission laser diode elements arranged in the form of a two-dimensional array, wherein a plurality of straight lines drawn perpendicularly to a straight line extending in a first direction from respective centers of the plurality of surface emission laser diode elements aligned in a second direction perpendicular to the first direction, are formed with generally equal interval in the first direction, the plurality of surface-emission laser diode elements are aligned in the first direction with an interval set to a reference value, and wherein the number of the surface-emission laser diode elements aligned in the first direction is smaller than the number of the surface-emission laser diode elements aligned in the second direction.
Abstract:
An optical scanning device includes a light source having light emitting points for emitting light beams, a coupling optical element that couples the light beams, a deflecting unit that deflects and scans the light beams, and a scanning optical system that focus the light beams to form an image. The optical scanning device satisfies the following condition: F tan(θ/2)+A
Abstract translation:光学扫描装置包括具有用于发射光束的发光点的光源,耦合光束的耦合光学元件,偏转和扫描光束的偏转单元,以及聚焦光束以形成的扫描光学系统 一个图像。 光学扫描装置满足以下条件:F tan(θ/ 2)+ A
Abstract:
An optical scanning device includes a lens having a negative optical power at least in a sub-scanning direction and a lens having a positive optical power at least in the sub-scanning direction between a light source and a deflecting unit. The optical scanning device further includes a coupling lens and an adjusting lens whose positions can be adjusted in an optical axis direction and then bonded with ultraviolet curing resin. Therefore, the magnification of an optical system can be adjusted and consequently a desired scan-line interval can be obtained.
Abstract:
By setting elements within the range that predetermined conditions are satisfied, for example, so that a size of a rotating polygon mirror is minimized, the rotating polygon mirror is made compact while the eclipse of light beams in the main scanning direction is prevented. The cost reduction of an apparatus is thus realized. The compact rotating polygon mirror reduces the consumption energy and the amount of heat generated in its drive system. Deteriorations in various optical characteristics including an increase in spot diameter of the light beam by temperature variation, uneven scanning pitch, and sub-scanning direction variation in beam pitch are suppressed.
Abstract:
An optical scanning device includes a first optical element that converts a cross-section shape of a light beam from a semiconductor laser to a desired shape; a second optical element that guides the light beam output from the first optical element to an optical deflector that deflects the light beam; and a third optical element that gathers the light beam deflected by the optical deflector onto a surface to be scanned to form a light spot thereby optically scanning the surface. At least one of the first optical element, the second optical element, and the third optical element includes a resin-made lens, at least one of the resin-made lenses has a power diffracting surface, and a surface shape of at least one of power diffracting surfaces is formed so that a power of a diffracting portion and a power of a refractive portion are cancelled out.
Abstract:
A scanning optical system leads the light fluxes deflected by the polygon mirror to a photosensitive drum. An absolute value of a lateral magnification in a main scanning direction is larger than an absolute value of a lateral magnification in a sub-scanning direction. Moreover, a beam diameter in the sub-scanning direction on a surface of the photosensitive drum is equal to or smaller than a beam diameter in the main scanning direction and larger than a scan line interval.
Abstract:
By setting elements within the range that predetermined conditions are satisfied, for example, so that a size of a rotating polygon mirror is minimized, the rotating polygon mirror is made compact while the eclipse of light beams in the main scanning direction is prevented. The cost reduction of an apparatus is thus realized. The compact rotating polygon mirror reduces the consumption energy and the amount of heat generated in its drive system. Deteriorations in various optical characteristics including an increase in spot diameter of the light beam by temperature variation, uneven scanning pitch, and sub-scanning direction variation in beam pitch are suppressed.
Abstract:
A scanning unit in an image forming apparatus includes a light source, a coupling lens, an aperture, an image forming lens, and a polygon mirror. The light source includes a plurality of surface-emitting lasers. The coupling lens, the aperture, and the image forming lens are arranged on the optical path of light beams emitted by the light source. The polygon mirror deflects light beams of an image formed by the coupling lens towards a photosensitive drum for scanning. The focal length of the image forming lens in a sub-scanning direction is set to be equal to or smaller than an optical path length between the image forming lens and the aperture.
Abstract:
An optical scanning device includes a light source having light emitting points for emitting light beams, a coupling optical element that couples the light beams, a deflecting unit that deflects and scans the light beams, and a scanning optical system that focus the light beams to form an image. The optical scanning device satisfies the following condition: F tan(θ/2)+A
Abstract translation:光学扫描装置包括具有用于发射光束的发光点的光源,耦合光束的耦合光学元件,偏转和扫描光束的偏转单元,以及聚焦光束以形成的扫描光学系统 一个图像。 光扫描装置满足以下条件:<?in-line-formula description =“In-line formula”end =“lead”?> F tan(θ/ 2)+ A 其中A是发光点和耦合光学元件的光轴之间的最大距离,θ是发散角(全宽半最大值) 的光束,F是耦合光学元件的焦距,D是耦合光学元件的有效半径。
Abstract:
An optical scanning device includes a first optical element that converts a cross-section shape of a light beam from a semiconductor laser to a desired shape; a second optical element that guides the light beam output from the first optical element to an optical deflector that deflects the light beam; and a third optical element that gathers the light beam deflected by the optical deflector onto a surface to be scanned to form a light spot thereby optically scanning the surface. At least one of the first optical element, the second optical element, and the third optical element includes a resin-made lens, at least one of the resin-made lenses has a power diffracting surface, and a surface shape of at least one of power diffracting surfaces is formed so that a power of a diffracting portion and a power of a refractive portion are cancelled out.