Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
Catalyst systems for olefin polymerization include a metal-ligand complex of a general formula (I). The metal-ligand complex of formula (I) is a transition metal complex of titanium, zirconium, or hafnium, in which the transition metal is coordinated with a biaryl phenoxy ligand structure. Olefin polymerization processes include contacting ethylene and optionally one or more (C3-C12) alpha-olefins in the presence of the catalyst system to produce an ethylene-based polymer or copolymer.
Abstract:
A process to form a composition comprising an ethylene/vinylarene diblock and/or triblock interpolymer, and comprising at least the following steps: A) polymerizing in a reactor A, a mixture A comprising ethylene, and optionally an alpha-olefin, and optionally a vinylarene, in the presence of at least the following: a) a metal complex S selected from the following: Formula S1, Formula S2, Formula S3, Formula S4 or Formula S5, as described herein: B) polymerizing in a reactor B, a mixture B comprising ethylene, a vinylarene, and optionally an alpha-olefin, in the presence of at least the following: b) a metal complex H selected from the following Formula H1 or Formula H2, as described herein; and wherein step A occurs before step B, or vise-versa, and at least one chain shuttling agent is fed into the first reactor. A composition comprising an ethylene/vinylarene diblock or triblock interpolymer, as described herein.
Abstract:
A process to form a crosslinked composition, said process comprising thermally treating a composition that comprises the following components: a) an olefin/silane interpolymer, b) a cure catalyst, and c) a multi-vinyl compound. A composition comprising the following components: a) an olefin/silane interpolymer, b) a cure catalyst, and c) a multi-vinyl compound.
Abstract:
Embodiments are directed to catalyst systems comprising at least one metal ligand complex and to processes for polyolefin polymerization incorporating the catalyst systems. The metal ligand complexes have the following structures: (I)
Abstract:
Embodiments are directed to a catalyst system comprising metal-ligand complexes and processes for polyolefin polymerization using the metal-ligand complex having the following structure:
Abstract:
Provided is a composition comprising a compound having structure (I) wherein each of A1, A2, A3, A4, A5, A6, A7, and A8 is independently CR12 or N; wherein one to four of A1, A2, A3, A4, A5, A6, A7, and A8 are N; wherein J1 is C or Si; wherein J2 is C(R13)n, O, (C(R13)n)2, S, NR13, or Se; wherein n is 1 or 2; wherein each of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and R13 is independently H, deuterium, or an organic group. Also provided is a method of making the composition, a method of making an organic light-emitting diode using the composition, and an organic light-emitting diode made by that method.
Abstract:
Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 are optionally connected to each other to form a ring structure; wherein one or more of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is covalently bound to the polymer, and wherein A is an anion.
Abstract:
The present invention relates to a polymeric charge transfer layer comprising a polymer and a p-dopant. The polymer comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. The present invention further relates to an organic electronic device, especially an organic light emitting device containing the polymeric charge transfer layer.