Abstract:
A display device includes a first substrate, an organic EL layer formed on the first substrate and curved in each pixel, and color filters disposed in the respective pixels, and curved to match the organic EL layer. With this configuration, a change in the chromaticity and brightness of the display device depending on a viewing angle of a user is reduced.
Abstract:
An organic EL display device includes: a lower electrode disposed in each of pixels; an upper electrode disposed so as to cover the whole of the display area; an organic layer disposed between the lower electrode and the upper electrode and composed of a plurality of layers including a light-emitting layer composed of an organic material; a wire formed outside the display area and composed of conductive material; and a tapered structure layer formed on the wire and including tapered portions at each of which a side surface portion not in contact with the wire extends so as to overhang the wire. At least one layer of the organic layer is formed on the tapered structure layer. The tapered structure layer forms a contact hole surrounded by the side surface portions. The upper electrode is in contact with the wire through the contact hole.
Abstract:
A liquid crystal display device includes: a pair of substrates at least one of which is transparent; a liquid crystal layer disposed between the pair of substrates; an electrode group formed on at least one substrate of the pair of substrates, for applying an electric field to the liquid crystal layer; a plurality of active elements connected to the electrode group; and a liquid crystal alignment film disposed on at least one substrate of the pair of substrates, in which the liquid crystal alignment film, which is formed by a photo-alignment process, contains polyimide formed using tetracarboxylic acid dianhydride and/or diamine each having a specific chemical structure.
Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A method for fabricating a liquid crystal display device having a TFT substrate in which an alignment film is formed over a pixel including a pixel electrode and a TFT, an opposing substrate which faces the TFT substrate, and liquid crystals sandwiched between the TFT substrate and the opposing substrate, the alignment film on the TFT substrate including a first and a second alignment film. The method includes depositing a mixture liquid of polyamide acid ester, 80 percent or more of which is polyamide acid ester including cyclobutane, and polyamide acid not including cyclobutane onto the TFT substrate and the opposing substrate, and after drying and firing the TFT substrate and the opposing substrate to harden the alignment film, irradiating the alignment film with ultraviolet light for photo-alignment of the alignment film and, thereafter, heating the TFT substrate and the opposing substrate, thereby forming the alignment film.
Abstract:
Disclosed is a manufacturing method of a liquid crystal display device which is a manufacturing method of a liquid crystal display device including a liquid crystal alignment film to which an alignment regulating force is imparted by a photo-alignment treatment, including: a film forming step of forming a film containing a polymer whose main chain is cleaved by irradiation with light; a photo-alignment step of imparting an alignment regulating force to the film formed in the film forming step by irradiation of the film with light in an atmosphere of a temperature lower than 100° C.; and a removing step of removing a low-molecular weight component generated by cleaving the main chain of the polymer through the light irradiation after the light irradiation. Also disclosed is a liquid crystal display device manufactured by the manufacturing method.
Abstract:
The method for manufacturing a display device includes forming a light emitting element and a terminal on a substrate, forming a sealing film including a first inorganic insulating film and a second inorganic insulating film to cover the light emitting element and the terminal, forming a resist having a taper shape in which a thickness of an end portion on the sealing film becomes thinner as it goes to the terminal side by using a gray-tone mask, forming a taper shape in which thicknesses in end portions of the first inorganic insulating film and the second inorganic insulating film becomes thinner as it goes to the terminal side by etching, forming a touch electrode above the sealing film and forming wiring connected to the terminal via the end portions together with connecting to the touch electrode for detecting a touched position.
Abstract:
Disclosed is a display device which includes: a substrate having a first edge portion and a second edge portion; a plurality of light-emitting elements over the substrate; a passivation film over the plurality of light-emitting elements; a barrier layer over the passivation film; and a touch sensor over the barrier layer. The barrier layer has a first sidewall along the first edge portion and a second sidewall along the second edge portion, and a first angle between a top surface of the substrate and the first sidewall is different from a second angle between the top surface and the second sidewall.
Abstract:
A display device according to an embodiment of the invention includes: a base insulating film; a sealing film which covers the base insulating film; a plurality of first electrodes which are two-dimensionally arranged on the sealing film, the first electrodes adjacent in a first direction being connected via a first connection line; a plurality of second electrodes which are two-dimensionally arranged, the second electrodes adjacent in the second direction being connected via a second connection line intersecting the first connection line in plan view; an interlayer insulating film which is interposed between the first connection line and the second connection line and which fills a step formed by an outer edge of the sealing film and the base insulating film; and a lead-out wiring which is connected to the first electrode or the second electrode and which passes over a portion of the interlayer insulating film which fills the step.
Abstract:
Disclosed is a display device having a first layer and a second layer over the second layer. The first layer possesses a display region including: a plurality of first sub-pixels; a plurality of second sub-pixels; a plurality of third sub-pixels; a partition wall sandwiched by two adjacent sub-pixels; and a sealing film thereover. The second layer includes: a first touch electrode overlapping with the partition wall and arranged along the partition wall; and a second touch electrode overlapping with the partition wall, arranged along the partition wall, and intersecting the first touch electrode. The first touch electrode and the second touch electrode exist in the same layer. The first touch electrode and the second touch electrode each have a plurality of openings. Among the number of the first sub-pixels, the number of the second sub-pixels, and the number of the third sub-pixels, one is different from the other two.