Abstract:
Color-scanning grating-based backlighting includes a color scanning protocol to provide different colors of light in different regions of a plate light guide with an intervening dark region. A color-scanning grating-based backlight includes the plate light guide and a diffraction grating configured to diffractively couple out a portion of a guided light beam as a coupled-out light beam directed away from a plate light guide surface at a predetermined principal angular direction. The backlight further includes a multicolor light source configured to provide the different colors of light to the plate light guide as the guided light beam according to the color scanning protocol. Provided light of a first color in a first region is separated from provided light of a second color in a second region one or both by the intervening dark region and by a light-confining wall of the plate light guide.
Abstract:
A polarization-mixing light guide includes a plate light guide and a polarization retarder within the plate light guide. The light guide is to guide a beam of light at a non-zero propagation angle. The light beam includes a first polarization component and a second polarization component. The polarization retarder is to redistribute the first and second polarization components of the guided light beam into predetermined combinations of the polarization components. The light guide is to preferentially scatter out a portion of the guided light beam having the first polarization component. A three-dimensional (3-D) electronic display includes an array of multibeam diffraction gratings at a surface of the plate light guide to preferentially couple out the first polarization component of the guided light beam as a plurality of light beams having different principal angular directions.
Abstract:
A directional backlight is disclosed. The directional backlight has a plurality of light sources to generate a plurality of input planar lightbeams. The plurality of input planar lightbeams illuminates a directional backplane that has a plurality of directional pixels to scatter the plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. The directional backlight can be used to generate a 3D image by specifying the characteristics of the directional pixels in the directional backplane.
Abstract:
Multibeam diffraction grating-based backlighting includes a light guide and a multibeam diffraction grating at a surface of the light guide. The light guide is to guide light from a light source. The multibeam diffraction grating is to couple out a portion of the guided light using diffractive coupling and to direct the coupled out portion away from the light guide as a plurality of light beams with different principal angular directions.
Abstract:
A directional backlight is disclosed. The directional backlight has a directional backplane that has a plurality of directional pixels to scatter a plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. A modulation layer having a plurality of modulators modulates the plurality of directional lightbeams. The directional backlight can be used to generate a 3D image with multiple views by specifying the characteristics of the directional pixels in the directional backplane.
Abstract:
Multibeam diffraction grating-based backlighting includes a light guide and a multibeam diffraction grating at a surface of the light guide. The light guide is to guide light from a light source. The multibeam diffraction grating is to couple out a portion of the guided light using diffractive coupling and to direct the coupled out portion away from the light guide as a plurality of light beams with different principal angular directions.
Abstract:
A directional backlight is disclosed. The directional backlight has a plurality of light sources to generate a plurality of input planar lightbeams. The plurality of input planar lightbeams illuminates a directional backplane that has a plurality of directional pixels to scatter the plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. The directional backlight can be used to generate a 3D image by specifying the characteristics of the directional pixels in the directional backplane.
Abstract:
A horizontal parallax multiview display employs a plurality of slanted multibeam columns to scatter out of a light guide a plurality of directional light beams having principal angular directions corresponding to different view directions of the horizontal parallax multiview display. The plurality of directional light beams is modulated using an array of light valves to provide a multiview image having horizontal parallax. Further, the horizontal parallax multiview display employs a light control film having a slanted light control axis aligned with slanted multibeam columns of the slanted multibeam column plurality. The light control film is configured to control a view angle of the multiview image in a direction orthogonal to the horizontal parallax. The slanted multibeam columns may provide the multiview displays with a balanced resolution.
Abstract:
A multiview display employs an array of multibeam elements configured to provide directional light beams having different principal angular directions corresponding to different view directions of the multiview display. Moreover, the multiview display includes an array of light valves configured to modulate the directional light beams as a multiview image to be displayed by the multiview display, where a multiview pixel of the multiview display includes a set of light valves of the light valve array corresponding to a multibeam element of the multibeam element plurality and being configured to modulate directional light beams from the multibeam element. Furthermore, a shape of the multiview pixel is dynamically reconfigurable to provide the multiview image having a dynamic field of view (FOV). The FOV may be modified based on a monitored orientation of the multiview display, a monitored position of a user relative to the multiview display, or both.
Abstract:
A multiview backlight, multiview display, and method of multiview backlight operation include reflective multibeam elements configured to provide emitted light having directional light beams with directions corresponding to view directions of a multiview image. The multiview backlight includes a light guide configured to guide light and an array of the reflective multibeam elements. Each reflective multibeam element includes a plurality of reflective sub-elements and is configured to reflectively scatter out a portion of the guided light as the emitted light. The multiview display includes the multiview backlight and an array of light valves to modulate the directional light beams to provide the multiview image. Each reflective sub-element protrudes from a guiding surface of the light guide by a respective protrusion distance. At least some of the protrusion distances can vary as a function of distance along a length of the light guide.