Biased total thickness variations in waveguide display substrates

    公开(公告)号:US11022753B2

    公开(公告)日:2021-06-01

    申请号:US16792083

    申请日:2020-02-14

    Abstract: A plurality of waveguide display substrates, each waveguide display substrate having a cylindrical portion having a diameter and a planar surface, a curved portion opposite the planar surface defining a nonlinear change in thickness across the substrate and having a maximum height D with respect to the cylindrical portion, and a wedge portion between the cylindrical portion and the curved portion defining a linear change in thickness across the substrate and having a maximum height W with respect to the cylindrical portion. A target maximum height Dt of the curved portion is 10−7 to 10−6 times the diameter, D is between about 70% and about 130% of Dt, and W is less than about 30% of Dt.

    EYEPIECES FOR AUGMENTED REALITY DISPLAY SYSTEM

    公开(公告)号:US20210041704A1

    公开(公告)日:2021-02-11

    申请号:US17079143

    申请日:2020-10-23

    Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may overlap the MPE region and may out couple one or more of the diffracted beams from the optically transmissive substrate as output beams.

    Eyepiece for virtual, augmented, or mixed reality systems

    公开(公告)号:US10451799B2

    公开(公告)日:2019-10-22

    申请号:US15877117

    申请日:2018-01-22

    Abstract: An eyepiece waveguide for an augmented reality. The eyepiece waveguide can include a transparent substrate with an input coupler region, first and second orthogonal pupil expander (OPE) regions, and an exit pupil expander (EPE) region. The input coupler region can be positioned between the first and second OPE regions and can divide and re-direct an input light beam that is externally incident on the input coupler region into first and second guided light beams that propagate inside the substrate, with the first guided beam being directed toward the first OPE region and the second guided beam being directed toward the second OPE region. The first and second OPE regions can respectively divide the first and second guided beams into a plurality of replicated, spaced-apart beams. The EPE region can re-direct the replicated beams from both the first and second OPE regions such that they exit the substrate.

    EYEPIECES FOR AUGMENTED REALITY DISPLAY SYSTEM

    公开(公告)号:US20190187474A1

    公开(公告)日:2019-06-20

    申请号:US16221359

    申请日:2018-12-14

    Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may be positioned to receive one or more of the diffracted beams from the MPE region and to out couple them from the optically transmissive substrate as output beams.

    SURFACE RELIEF WAVEGUIDES WITH HIGH REFRACTIVE INDEX RESIST

    公开(公告)号:US20240418928A1

    公开(公告)日:2024-12-19

    申请号:US18729437

    申请日:2023-01-20

    Abstract: The disclosure describes an improved drop-on-demand, controlled volume technique for dispensing resist onto a substrate, which is then imprinted to create a patterned optical device suitable for use in optical applications such as augmented reality and/or mixed reality systems. The technique enables the dispensation of drops of resist at precise locations on the substrate, with precisely controlled drop volume corresponding to an imprint template having different zones associated with different total resist volumes. Controlled drop size and placement also provides for substantially less variation in residual layer thickness across the surface of the substrate after imprinting, compared to previously available techniques. The technique employs resist having a refractive index closer to that of the substrate index, reducing optical artifacts in the device. To ensure reliable dispensing of the higher index and higher viscosity resist in smaller drop sizes, the dispensing system can continuously circulate the resist.

Patent Agency Ranking