Abstract:
A method and apparatus for deriving a motion vector predictor (MVP) are disclosed. The MVP is selected from spatial MVP and temporalone or more MVP candidates. The method determines a value of a flag in a video bitstream, where the flag is utilized for selectively disabling use of one or more temporal MVP candidates for motion vector prediction. The method selects, based on an index derived from the video bitstream, the MVP from one or more non-temporal MVP candidates responsive to the flag indicating that said one or more temporal MVP candidates are not to be utilized for motion vector prediction. Further, the method provides the MVP for the current block.
Abstract:
A method and apparatus for Simplified Depth Coding (SDC) with extended Intra prediction modes are disclosed. Embodiments of the present invention use an extended Intra prediction mode set including Horizontal mode and Vertical mode. When the Horizontal mode is selected, the prediction samples for the current depth block are derived based on a reconstructed neighboring depth column adjacent to a left block boundary of the current depth block by generating rows of the prediction samples from the reconstructed neighboring depth column. When the Vertical mode is selected, the prediction samples for the current depth block are derived based on a reconstructed neighboring depth row adjacent to a top block boundary of the current depth block by generating columns of the prediction samples from the reconstructed neighboring depth row.
Abstract:
A method for adaptively performing video decoding includes: performing decoding complexity management based upon parameter representing processing capability related to the adaptive complexity video decoder, in order to determine whether to reduce decoding complexity of at least one component of a plurality of components within an adaptive complexity video decoder; and selectively reducing decoding complexity of a portion of components within the adaptive complexity video decoder. An associated adaptive complexity video decoder and an associated adaptive audio/video playback system are also provided. In particular, the adaptive complexity video decoder includes a plurality of components and a decoding complexity manager. When needed, the decoding complexity manager delays audio playback of audio information.
Abstract:
An apparatus and method for temporal motion vector prediction for a current block in a picture are disclosed. In the present method, one temporal block in a first reference picture in a first list selected from a list group comprising list 0 and list 1 is determined. When the determined temporal block has at least one motion vector, a candidate set is determined based on the motion vector of the temporal block. The temporal motion vector predictor or temporal motion vector predictor candidate or temporal motion vector or temporal motion vector candidate for the current block is determined from the candidate set by checking a presence of a motion vector pointing to a reference picture in a first specific list in said at least one motion vector, wherein the first specific list is selected from the list group based on a priority order.
Abstract:
A method and apparatus for performing hybrid multihypothesis prediction during video coding of a coding unit includes: processing a plurality of sub-coding units in the coding unit; and performing disparity vector (DV) derivation when the coding unit is processed by a 3D or multi-view coding tool or performing block vector (BV) derivation when the coding unit is processed by intra picture block copy (IntraBC) mode. The step of performing DV or BV derivation includes deriving a plurality of vectors for multihypothesis motion-compensated prediction of a specific sub-coding unit from at least one other sub-coding/coding unit. The one other sub-coding/coding unit is coded before the corresponding DV or BV is derived for multihypothesis motion-compensated prediction of the specific sub-coding unit. A linear combination of a plurality of pixel values derived from the plurality of vectors is used as a predicted pixel value of the specific sub-coding unit.
Abstract:
A method and apparatus for three-dimensional video coding or multi-view video coding are disclosed. Embodiments according to the present invention derive a unified disparity vector from depth information for Inter mode and Skip/Direct mode. The unified disparity vector is derived from a subset of depth samples in an associated depth block corresponding to the current block using a unified derivation method. The unified derivation method is applied in Inter mode, Skip mode, or Direct mode when a disparity vector derived from depth data is required for encoding or decoding. The unified disparity vector can also be applied to derive a disparity vector for locating a corresponding block, and thus an inter-view motion vector candidate can be determined for Skip mode or Direct mode.
Abstract:
A method and apparatus for three-dimensional video encoding or decoding using the disparity vector derived from an associated depth block are disclosed. The method determines an associated depth block for a current texture block and derives a derived disparity vector based on a subset of depth samples of the associated depth block. The subset contains less depth samples than the associated depth block and the subset excludes a single-sample subset cprresponding to a center sample of the associated depth block. The derived disparity vector can be used as an inter-view motion (disparity) vector predictor in Inter mode, an inter-view (disparity) candidate in Merge mode or Skip mode. The derived disparity vector can also be used to locate a reference block for inter-view motion prediction in Inter mode, inter-view candidate in Merge or Skip mode, inter-view motion prediction, inter-view disparity prediction, or inter-view residual prediction.
Abstract:
A method and apparatus for deriving a motion vector predictor (MVP) candidate set for a block are disclosed. Embodiments according to the present invention generate a complete full MVP candidate set based on the redundancy-removed MVP candidate set if one or more redundant MVP candidates exist. In one embodiment, the method generates the complete full MVP candidate set by adding replacement MVP candidates to the redundancy-removed MVP candidate set and a value corresponding to a non-redundant MVP is assigned to each replacement MVP candidate. In another embodiment, the method generates the complete full MVP candidate set by adding replacement MVP candidates to the redundancy-removed MVP candidate set and a value is as signed to each replacement MVP candidate according to a rule. The procedure of assigning value, checking redundancy, removing redundant MVP candidate are repeated until the MVP candidate set is complete and full.
Abstract:
A method and apparatus of video coding incorporating Deep Neural Network are disclosed. A target signal is processed using DNN (Deep Neural Network), where the target signal provided to DNN input corresponds to the reconstructed residual, output from the prediction process, the reconstruction process, one or more filtering processes, or a combination of them. The output data from DNN output is provided for the encoding process or the decoding process. The DNN can be used to restore pixel values of the target signal or to predict a sign of one or more residual pixels between the target signal and an original signal. An absolute value of one or more residual pixels can be signalled in the video bitstream and used with the sign to reduce residual error of the target signal.
Abstract:
A video decoding method includes decoding a part of a bitstream to generate a decoded frame, wherein the decoded frame is a projection-based frame that includes a plurality of projection faces packed in a projection layout with M projection face columns and N projection face rows, M and N are positive integers, and at least a portion of a 360-degree content of a sphere is mapped to the plurality of projection faces via projection. Regarding the decoded frame, a picture width excluding guard band samples is equal to an integer multiple of M, and a picture height excluding guard band samples is equal to an integer multiple of N.