Abstract:
A method for producing an optical waveguide by melt-drawing a transparent glass rod which has been produced by collapsing a porous glass rod after being doped with a dopant material by depositing said material on the surface of the micro pores in order to enhance the refractive index of the collapsed glass rod, wherein a waveguide having higher mechanical strength and lower transmission is attained by drawing said glass rod at a temperature very close to the melting point of the outermost portion of the fiber without causing any overmelting or bubbling in the core portion, said drawing being facilitates by matching the viscosity and characteristics of the outermost lower-refractive-index portion to those of the central higher-refractive-index portion.
Abstract:
In a battery operated electric timepiece operated by a battery of the type including a time display, such as a second hand, when the voltage of the battery decreases below a predetermined value, the movement of the second hand is modified to give an alarm that the life of the battery has terminated.
Abstract:
A month correcting mechanism for calendar timepieces comprises a month indicating dial having a toothing and a month dial correcting lever assembly adapted to be engaged with the toothing of the month indicating dial. By manually actuating the month dial correcting lever assembly, the month indicating dial may be rotated independently of the date dial to correct the indication of the month.
Abstract:
An electronic timepiece is disclosed which has at least one display function in addition to an ordinary time display function and comprises a sole electro-mechanical transducer for dividing a kept time and driving a first display function and a second display function separately.
Abstract:
Provided is a battery pack that can uniformly cool a plurality of electric cells, prevent a breakdown of the electric cells, and provide high performance of all electric cells. The battery pack includes a packaging case in which: each adjacent ones of a plurality of electric cells in the first direction define a ventilation space; first and second passages are defined that extend in the first direction and that are arranged to have the plurality of electric cells located between the first and second passages in a second direction intersecting the first direction, wherein gas supplied to the first passage flows through the ventilation spaces to the second passage; and a flow rate limitation device is provided that is arranged in an upstream area of the first passage and that limits a flow rate of the gas flowing through one of the plurality of ventilation spaces, which leads to the upstream area of the first passage, to a predetermined flow rate.
Abstract:
A radiation imaging apparatus has a pixel region arranged on a substrate. Arranged in a matrix pattern in the pixel region are pixels, each pixel including a conversion element which converts radiation to electrical charges, and a switching element which is connected to the conversion element therein. The radiation imaging apparatus has, in a region outside the pixel region of the substrate, an intersection at which a signal line connected to the switching element and a bias line connected to the conversion element intersects. At the intersection, a semiconductor layer is arranged between the signal line and the bias line, and a carrier blocking portion is arranged between the semiconductor layer and the signal line.
Abstract:
A stacked-type detection apparatus includes a plurality of pixels arranged in a matrix having row and column directions. Each pixel includes a conversion element configured to convert radiation or light into an electric charge, and a switch element configured to output an electric signal corresponding to the electric charge. A driving line is connected to switch elements arranged in the row direction, and a signal line is connected to switch elements arranged in the column direction. In each pixel, the conversion element is disposed above the switch element. The signal line is formed by a conductive layer embedded in an insulating layer located below an uppermost surface portion of a main electrode of the switch element located below an uppermost surface portion of the driving line located below the conversion element.
Abstract:
A detection apparatus includes a driving circuit unit in which a plurality of unit circuits each including a first circuit that supplies conducting voltage of a switch element of a pixel based on voltage included in a clock signal to a driving wire in accordance with an initiation signal and a second circuit that supplies non-conducting voltage of the switch element to the driving wire in accordance with a termination signal are provided for the plurality of corresponding driving wires and a control unit that supplies the clock signal to the driving circuit unit. The control unit supplies control voltage to the plurality of unit circuits, and each of the plurality of unit circuits further includes a third circuit that continues to supply the non-conducting voltage to the corresponding driving wire in accordance with the control voltage.
Abstract:
Provided is a biological treatment method of organic-matter-containing water in which a decrease in the permeation flux of a membrane in a membrane-separation activated-sludge process can be effectively suppressed. A biological treatment method of organic-matter-containing water includes introducing organic-matter-containing water containing organic matter into a biological treatment tank, mixing the organic-matter-containing water with activated sludge, biologically treating the organic-matter-containing water, and subjecting a mixed liquor of the organic-matter-containing water and the activated sludge to membrane separation, wherein an iron salt and a phenolic resin are added to the raw water. Substances (for example, metabolites of activated-sludge organisms) that cause a decrease in the permeation flux of a separation membrane become insoluble due to the flocculating effect by the iron salt and bonding with the phenolic resin.
Abstract:
Provided is a battery pack that can uniformly cool a plurality of electric cells, prevent a breakdown of the electric cells, and provide high performance of all electric cells. The battery pack includes a packaging case in which: each adjacent ones of a plurality of electric cells in the first direction define a ventilation space; first and second passages are defined that extend in the first direction and that are arranged to have the plurality of electric cells located between the first and second passages in a second direction intersecting the first direction, wherein gas supplied to the first passage flows through the ventilation spaces to the second passage; and a flow rate limitation device is provided that is arranged in an upstream area of the first passage and that limits a flow rate of the gas flowing through one of the plurality of ventilation spaces, which leads to the upstream area of the first passage, to a predetermined flow rate.