Partially and fully surface-enabled alkali metal ion-exchanging energy storage devices

    公开(公告)号:US10326168B2

    公开(公告)日:2019-06-18

    申请号:US14121050

    申请日:2014-07-25

    Abstract: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from (A) non-Li alkali metals; (B) alkaline-earth metals; (C) transition metals; (D) other metals such as aluminum (Al); or (E) a combination thereof; and wherein at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with said electrolyte, and wherein the operation of the battery device does not involve the introduction of oxygen from outside the device and does not involve the formation of a metal oxide, metal sulfide, metal selenide, metal telluride, metal hydroxide, or metal-halogen compound. This energy storage device has a power density significantly higher than that of a lithium-ion battery and an energy density dramatically higher than that of a supercapacitor.

    Continuous Process and Apparatus for Producing Graphene

    公开(公告)号:US20190152784A1

    公开(公告)日:2019-05-23

    申请号:US15817882

    申请日:2017-11-20

    Abstract: Provided is a method of producing isolated graphene sheets, comprising: (a) providing a reacting slurry containing a mixture of particles of a graphite or carbon material and an intercalant and/or an oxidizing agent; (b) providing one or a plurality of flow channels to accommodate the reacting slurry, wherein at least one of the flow channels has an internal wall surface and a volume and an internal wall-to-volume ratio of from 10 to 4,000; (c) moving the reacting slurry continuously or intermittently through at least one or a plurality of flow channels, enabling reactions between the graphite or carbon particles and the intercalant and/or oxidant to occur substantially inside the flow channels to form a graphite intercalation compound (GIC) or oxidized graphite (e.g. graphite oxide) or oxidized carbon material as a precursor material; and (d) converting the precursor material to isolated graphene sheets.

    Process for producing flexible and shape-conformal rope-shape alkali metal batteries

    公开(公告)号:US10008747B1

    公开(公告)日:2018-06-26

    申请号:US15392127

    申请日:2016-12-28

    Abstract: Provided is a process for producing a rope-shaped alkali metal battery, comprising: (a) providing a first electrode comprising a first conductive porous rod and a first mixture of a first electrode active material and a first electrolyte residing in the pores of the first porous rod; (b) wrapping or encasing a porous separator around the first electrode to form a separator-protected first electrode; (c) providing a second electrode comprising a second conductive porous rod and a second mixture of a second electrode active material and a second electrolyte residing in the pores of the second porous rod; (d) combining the separator-protected first electrode and second electrode to form a braid or a yarn having a twist or spiral electrode; and (e) wrapping or encasing a protective casing or sheath around the braid or yarn to form the rope battery.

    Process for producing unitary graphene matrix composites containing carbon or graphite fillers

    公开(公告)号:US09803124B2

    公开(公告)日:2017-10-31

    申请号:US14756852

    申请日:2015-10-22

    CPC classification number: C09K5/14 B29B13/021 B29D7/01 H01B1/04

    Abstract: A process for producing a unitary graphene matrix composite, the process comprising: (a) preparing a graphene oxide gel having graphene oxide molecules dispersed in a fluid medium, wherein the graphene oxide gel is optically transparent or translucent; (b) mixing a carbon or graphite filler phase in said graphene oxide gel to form a slurry; (c) dispensing said slurry onto a surface of a supporting substrate or a cavity of a molding tool; (d) partially or completely removing the fluid medium from the slurry to form a composite precursor; and (e) heat-treating the composite precursor to form the unitary graphene composite at a temperature higher than 100° C. This composite exhibits a combination of exceptional thermal conductivity, electrical conductivity, mechanical strength, surface hardness, and scratch resistance.

Patent Agency Ranking