Abstract:
A method for scanning a stream of objects includes continuously acquiring raw data of the stream of objects using an X-ray system, that includes a detector. The raw data of the stream of objects is rebinned into at least one two-dimensional sinogram. A leading edge and a trailing edge of a first object of the stream of objects is determined from the at least one two-dimensional sinogram and a three-dimensional image of the first object is reconstructed using the at least one two-dimensional sinogram.
Abstract:
A photon-counting detector includes a direct conversion material constructed to directly convert an energy of at least one incident photon to an electrical signal indicative of the energy level of the at least one individual photon and a data acquisition system (DAS). The DAS includes a first comparator having a first signal level threshold that is less than an electrical signal level that is indicative of a maximum energy of a spectrum of photons, the first comparator configured to output a count when the electrical signal level exceeds the first signal level threshold, and a second comparator having a second signal level threshold that is greater than or equal to the electrical signal level indicative of the maximum energy of the spectrum of photons, the second comparator configured to output a count when the electrical signal exceeds the second signal level threshold. The DAS further includes a device configured to determine a photon count based on the counts from the first and second comparators and to output the photon count for image reconstruction.
Abstract:
A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned, a first x-ray emission source attached to the rotatable gantry and configured to emit x-rays toward the object, and a second x-ray emission source attached to the rotatable gantry and configured to emit x-rays toward the object. A first detector is configured to receive x-rays that emit from the first x-ray emission source, and a second detector configured to receive x-rays that emit from the second x-ray emission source. A first portion of the first detector is configured to operate in an integration mode and a first portion of the second detector is configured to operate in at least a photon-counting mode.
Abstract:
A method for reconstructing an image of an object, the image comprising a plurality of image elements, is disclosed. The method includes accessing image data associated with the plurality of image elements, applying a first algorithm to the plurality of image elements, selecting a spatially non-homogenous set of the plurality of image elements, and applying an iterative algorithm to the set of image elements to reduce an amount of time necessary for reconstructing the image, or to improve an image quality at a fixed computation time, or both.
Abstract:
A method for acquiring an image data set comprising energy integrating (EI) and energy discriminating (ED) data measurements is provided. The method comprises obtaining EI measurement data and ED measurement data during an acquisition cycle. The method then comprises combining the EI measurement data and the ED measurement data before, during or after reconstruction. Finally the method comprises performing reconstruction on the original or combined datasets to obtain one or more of an EI image and one or more ED component images.
Abstract:
A CT system in an example comprises one or more high frequency electromagnetic energy sources, a detection assembly, a data acquisition system (DAS), and a computer. The one or more high frequency electromagnetic energy sources emit one or more beams of high frequency electromagnetic energy toward an object to be imaged. The detection assembly is capable of measuring a plurality of projection data at a same projection path that corresponds to a plurality of distinct incident energy spectra. The detection assembly comprises one or more energy discriminating (ED) detectors and/or one or more energy integration (EI) detectors that receive high frequency electromagnetic energy emitted by the one or more high frequency electromagnetic energy sources. The data acquisition system (DAS) is operably connected to the one or more ED detectors and/or the one or more EI detectors. The computer is operably connected to the DAS.
Abstract:
Methods for projecting and backprojecting rays with respect to pixels/detector bins to attenuate/eliminate high-frequency artifacts, are disclosed. The first two methods are adaptations of pixel-driven and ray-driven linear interpolation techniques respectively. In these techniques, the window or shadow of each pixel/bin is dynamically adjusted and projected onto the detector bin/pixel to eliminate gaps between the shadows. This allows the effect of each pixel on a given detector bin (or vice versa) to be appropriately weighted. A third is a distance-driven technique wherein the transitions of the pixels and the detector bins are respectively projected onto a common axis. This allows a determination of the contribution of each of the pixels/bins for each of the bins/pixels with lower computation time and improved artifact free images.
Abstract:
A method for imaging an object is provided. The method includes acquiring image data of the object, wherein the image data includes a plurality of original voxels each having an original CT number, identifying, using a processing device, a subset of the original voxels based on at least one of an original CT number and a location of each original voxel, applying, using the processing device, an anisotropic smoothing filter to the identified original voxels in the subset to generate a set of smoothed voxels each having a smoothed CT number, generating, using the processing device, smoothed image data by combining the original voxels and the smoothed voxels, and analyzing the smoothed image data to determine whether the object contains contraband.
Abstract:
Methods are provided for iteratively reconstructing an image signal to generate a reconstructed image signal. In one embodiment, sub-iterations of each iteration are performed on pixel subsets. The pixel subsets may be composed of pixels neighboring or spatially separated pixel. In a further embodiment, each iteration is performed at a different resolution. Systems and computer routines for processing image data iteratively in accordance with these techniques are also provided.
Abstract:
A method and system for recreating a two-dimensional distribution of temperatures in an exhaust plane of a gas turbine engine. Light transmission and detection pairs may be arranged in the annulus of the exhaust of the turbine engine in such a way that the individual rays form a two-dimensional mesh of beams across a sector of the exhaust. Based on the absorption of the rays, the temperature of the sector of the exhaust thru which the ray passes may be determined. Based on these determinations, an image that corresponds to the operation of the turbine engine may be generated.