Abstract:
A hearing device adapted for use by a wearer comprises an audio streaming circuit configured to receive electromagnetic audio streaming via a first communication link. A configuration circuit is configured to receive configuration parameters via a second communication link different from the first communication link for configuring the hearing device to receive the electromagnetic audio streaming. Control circuitry of the hearing device configures the hearing device to enable reception of the electromagnetic audio streaming in accordance with the received configuration parameters.
Abstract:
The present subject matter relates generally to methods and apparatus for detecting cellular telephones using hearing assistance devices. In an embodiment, a hearing assistance device includes a processor and a radio frequency transceiver connected to the processor. A detection circuit is connected to the processor, the detection circuit including a band pass filter and where the detection circuit is adapted to monitor a radio frequency signal to detect a cellular telephone in proximity to the hearing assistance device based on the monitored signal. The hearing assistance device includes an acoustic input, a magnetic input, and a switch for selecting between the acoustic input and the magnetic input. The processor is adapted to actuate the switch from the acoustic input to the magnetic input when a cellular telephone is detected in proximity to the hearing assistance device.
Abstract:
Techniques are disclosed for actuating a valve of a hearing assistance device. In one example, a hearing assistance device comprises a device housing defining a vent structure, a vent valve positioned within the vent, the vent valve having first and second states. The vent valve comprises a magnet, a disk configured to move about an axis, and a magnetic catch. The hearing assistance device further comprises an actuator, and a processor configured to provide at least one signal to the actuator to cause the disk to move to controllably adjust the vent structure.
Abstract:
Disclosed herein, among other things, are methods and apparatus for hearing assistance devices, and in particular to behind the ear and receiver in canal hearing aids with distributed processing. One aspect of the present subject matter relates to a hearing assistance device including hearing assistance electronics in a housing configured to be worn above or behind an ear of a wearer. The hearing assistance device includes an ear piece configured to be worn in the ear of the wearer and a processing component at the ear piece configured to perform functions in the ear piece and to communicate with the hearing assistance electronics, in various embodiments.
Abstract:
A user interface incorporated onto a hearing aid includes flexible hybrid component integrating a touch sensor into a bendable display. The touch sensor, such as a capacitive sensor, includes one or more sensor elements allowing a user to control operation of the hearing aid by touching. The bendable display presents information related to the operation of the hearing aid to the user.
Abstract:
A method for fitting a hearing instrument comprises obtaining sensor data from a plurality of sensors belonging to a plurality of sensor types; applying a machine learned (ML) model to determine, based on the sensor data, an applicable fitting category of the hearing instrument from among a plurality of predefined fitting categories, wherein the plurality of predefined fitting categories includes a fitting category corresponding to a correct way of wearing the hearing instrument and a fitting category corresponding to an incorrect way of wearing the hearing instrument; and generating an indication based on the applicable fitting category of the hearing instrument.
Abstract:
An ear-wearable device includes a photoplethysmography (PPG) sensor. One or more processors of the ear-wearable device are configured to determine, based on sample values of a PPG signal generated by the PPG sensor, whether a user of the ear-wearable device has fallen.
Abstract:
A method for fitting a hearing instrument comprises obtaining sensor data from a plurality of sensors belonging to a plurality of sensor types; applying a machine learned (ML) model to determine, based on the sensor data, an applicable fitting category of the hearing instrument from among a plurality of predefined fitting categories, wherein the plurality of predefined fitting categories includes a fitting category corresponding to a correct way of wearing the hearing instrument and a fitting category corresponding to an incorrect way of wearing the hearing instrument; and generating an indication based on the applicable fitting category of the hearing instrument.
Abstract:
An ear-wearable device includes a photoplethysmography (PPG) sensor. One or more processors of the ear-wearable device are configured to determine, based on sample values of a PPG signal generated by the PPG sensor, whether a user of the ear-wearable device has fallen.
Abstract:
An ear-wearable device, such as a hearing aid or earbud, includes a plurality of biometric sensors configured to generate sensor measurements indicative of at least an aspect of contact between the housing of the ear-wearable device and the ear canal of the user, and compares the sensor measurements to a stored profile in order to determine whether an authorized user is wearing the ear-wearable device.