Abstract:
The present invention discloses a circuit and a method for generating an internal clock signal, where the internal clock signal generation circuit includes a first delay portion for delaying an external clock signal by a first delay time, divides for dividing an output signal from the first delay portion, a first signal generator for generating a first signal with a pulse width equivalent to a skew monitor time by delaying an output signal from the divider by a second delay time and by combining the output signal from the divider with a signal delayed by the second delay time, a second signal generater for generating a second signal with a pulse width equivalent to a third delay time at a falling or rising edge of the output signal from the first delay portion, a time/digital signal converter for converting the skew monitor time equavalent to the pulse width of the first signal into first and second digital signals in response to the first signal, and a digital signal/time converter for reproducing the skew monitor time by inputting the first and the second digital signals in response to the second signal and generating the internal clock signal being delayed by a fourth delay time from the skew monitor time reproduced.
Abstract:
Integrated circuit voltage generating circuits include an integrated circuit substrate, a first voltage generating circuit in the integrated substrate that is configured to generate a first voltage from a power supply voltage, and a second voltage generating circuit in the integrated circuit substrate that is configured to generate a second voltage that is different from the first voltage from the power supply voltage. A shared capacitor in the integrated circuit substrate is connected to both the first voltage generating circuit and to the second voltage generating circuit. The shared capacitor is used by the first voltage generating circuit and the second voltage generating circuit, to generate the first and second voltages.
Abstract:
A clock signal control apparatus for a data output buffer that controls a data access time and an output signal maintaining time of the data output buffer based on a period of an input first clock signal. The apparatus includes a clock signal generator for generating a second clock signal having a period controlled by a period of a first clock signal, a clock signal controller and a data output buffer. The clock signal controller delays the second clock signal from the clock signal generator for a predetermined time, generates an output enable signal and a third clock signal in accordance with the second clock signal. A data output buffer receives a data signal, buffers the data signal in accordance with the third clock signal and the output enable signal from the clock signal controller, and generates an output data signal. The second clock signal has one of a plurality of periods based on the first clock signal.
Abstract:
A wordline driver for a memory device includes a row decoder decoding externally inputted row address signals and outputting a main decoding signal and a main decoding bar signal, a wordline drive decoder decoding two lowest bits among the row address signals and outputting a global decoding signal, a local wordline driver receiving first and second signals and outputting a local wordline driving signal in accordance with the global decoding signal corresponding to the wordline drive decoder, and a sub-wordline driver coupled to the wordline drive decoder and the local wordline driver and outputting a sub-wordline driving signal to a sub-wordline in accordance with the local wordline decoding signal from the local wordline driver, and the main decoding signal and the main decoding bar signal outputted from the row decoder.
Abstract:
A semiconductor device, a parallel interface system and methods thereof are provided. The example semiconductor device may include a reference clock transmitting block generating a reference clock signal, a plurality of first transceiver blocks, each of the plurality of first transceiver blocks transmitting at least one parallel data bit signal based on one of a plurality of phase-controlled transmitting sampling clock signals and a per-pin deskew block controlling a phase of a transmitting sampling clock signal to generate the phase-controlled sampling clock signals for the respective plurality of transceiver blocks, the per-pin deskew block controlling the phase of each phase-controlled transmitting sampling clock signal based on a phase skew between a given training data bit signal, among a plurality of training data bit signals, corresponding to a given first transceiver block and the reference clock signal in a first operation mode, and based on phase skew information relating to a phase skew between a given parallel data bit signal of the at least one parallel data bit signal and the reference clock signal in a second operation mode. An example method may include reducing skew based on a comparison between a plurality of transmitted training data bit signals and a corresponding plurality of received training data bit signals in a first mode of operation and reducing skew based on received phase skew information relating to a phase skew difference between a reference signal and a parallel data bit signal in a second mode of operation.
Abstract:
A level detector, an internal voltage generator including the level detector, and a semiconductor memory device including the internal voltage generator are provided. The internal voltage generator includes a level detector that compares a threshold voltage that varies with temperature with an internal voltage to output a comparative voltage, and an internal voltage driver that adjusts an external supply voltage in response to the comparative voltage and that outputs an internal voltage.
Abstract:
A memory cell includes a selection transistor on a substrate and an antifuse on the substrate. The selection transistor includes a first gate connected to a read word line, a first gate insulation layer that insulates the first gate from the substrate, a first source region connected to a bit line, and a first drain region, an impurity concentration of the first drain region being lower than an impurity concentration of the first source region. The antifuse includes a first electrode connected to a program word line and a second electrode connected to the selection transistor.
Abstract:
DC balance encoded data is transmitted by transmitting a preamble of dummy data that is configured to provide an intermediate number of bits of a given logic value that is at least one bit of the given logic value but less than a maximum number of bits of the given logic value in the DC balance encoded data, to thereby reduce the simultaneous switching noise that is caused by transmission of a first word of DC balance encoded data. The preamble may contain one or more words of fixed and/or variable dummy data.
Abstract:
DC balance encoded data is transmitted by transmitting a preamble of dummy data that is configured to provide an intermediate number of bits of a given logic value that is at least one bit of the given logic value but less than a maximum number of bits of the given logic value in the DC balance encoded data, to thereby reduce the simultaneous switching noise that is caused by transmission of a first word of DC balance encoded data. The preamble may contain one or more words of fixed and/or variable dummy data.
Abstract:
Semiconductor devices, a system including said semiconductor devices and methods thereof are provided. An example semiconductor device may receive data scheduled for transmission, scramble an order of bits within the received data, the scrambled order arranged in accordance with a given pseudo-random sequence. The received data may be balanced such that a difference between a first number of the bits within the received data equal to a first logic level and a second number of bits within the received data equal to a second logic level is below a threshold. The balanced and scrambled received data may then be transmitted. The example semiconductor device may perform the scrambling and balancing operations in any order. Likewise, on a receiving end, another semiconductor device may decode the original data by unscrambling and unbalancing the transmitted data. The unscrambling and unbalancing operations may be performed in an order based upon the order in which the transmitted data is scrambled and balanced.