Abstract:
An X-ray imaging apparatus acquiring a differential phase contrast image of a test object without using a light-shielding mask for X-ray. The apparatus includes an X-ray source, a splitting element configured to spatially divide an X-ray emitted from an X-ray source and a scintillator configured to emit light when a divided X-ray beam divided at the splitting element is incident on the scintillator. The apparatus also includes a light-transmission limiting unit configured to limit transmitting amount of the light emitted from the scintillator and a plurality of light detectors each configured to detect the amount of light that has transmitted through the light-transmission limiting unit. The light-transmission limiting unit is configured such that a light intensity detected at each of the light detectors changes in response to a change in an incident position of the X-ray beam.
Abstract:
A simplified X-ray imaging apparatus is capable of computationally determining effective atomic numbers with small error factors even for light elements. In one embodiment, the X-ray imaging apparatus has an X-ray generation unit 101 (400) for generating X-rays and a detector 105 (405) for detecting X-rays transmitted through an object of examination 104 (403). A computing unit 106 (406) computationally determines a quantity of an X-ray phase attributable to the object of examination and an X-ray transmittance of the object of examination from data detected by the detector. The computing unit also computationally determines an effective atomic number of the object of examination from ρet determined from the quantity of the X-ray phase and μt determined from the X-ray transmittance.
Abstract:
In a method for detecting the freezing of water within a fuel cell, precise detection can be performed using a phenomenon specific to the time when water starts to freeze to allow a reduction in erroneous activation. Detection at an early stage after the start of freezing is allowed, and hence measures can be taken against an output reduction before the water within the fuel cell completely freezes.
Abstract:
An X-ray detector includes an X-ray photoelectric conversion layer configured to produce electric charges in proportion to X-ray irradiation incident on the layer, a collecting electrode configured to collect the electric charges produced by the X-ray photoelectric conversion layer, a common electrode disposed on a surface of the X-ray photoelectric conversion layer opposite to the collecting electrode, a storage capacitor configured to store the electric charges collected by the collecting electrode, and a readout unit configured to read out the electric charges stored in the storage capacitor. A voltage is to be applied between the collecting electrode and the common electrode. The X-ray photoelectric conversion layer is formed of a polycrystalline oxide.
Abstract:
A simplified X-ray imaging apparatus is capable of computationally determining effective atomic numbers with small error factors even for light elements. The X-ray imaging apparatus has an X-ray generation unit 101 (400) for generating X-rays and a detector 105 (405) for detecting X-rays transmitted through an object of examination 104 (403). A computing unit 106 (406) computationally determines a quantity of an X-ray phase attributable to the object of examination and an X-ray transmittance of the object of examination from data detected by the detector. The computing unit also computationally determines an effective atomic number of the object of examination from ρet determined from the quantity of the X-ray phase and μt determined from the X-ray transmittance.
Abstract:
A fabrication method of fabricating a structure capable of being used for generation or detection of electromagnetic radiation includes a forming step of forming a layer containing a compound semiconductor on a substrate at a substrate temperature below about 300° C., a first heating step of heating the substrate with the layer in an ambience containing arsenic, and a second heating step of heating the substrate with the layer at the substrate temperature above about 600° C. in a gas ambience incapable of chemically reacting on the compound semiconductor. Structures of the present invention capable of being used for generation or detection of electromagnetic radiation can be fabricated using the fabrication method by appropriately regulating the substrate temperature, the heating time, the gas ambience and the like in the second heating step.
Abstract:
A porous structure includes an organic metal complex represented by the following general formula (1): M·L(A,B)3 (1) (where M represents a metal atom; L (A, B) represents a ligand constituted of A and B; and A and B respectively represent cyclic groups which may have or may not have one or more substituents).
Abstract:
A fabrication method of fabricating a structure capable of being used for generation or detection of electromagnetic radiation includes a forming step of forming a layer containing a compound semiconductor on a substrate at a substrate temperature below about 300° C., a first heating step of heating the substrate with the layer in an ambience containing arsenic, and a second heating step of heating the substrate with the layer at the substrate temperature above about 600° C. in a gas ambience incapable of chemically reacting on the compound semiconductor. Structures of the present invention capable of being used for generation or detection of electromagnetic radiation can be fabricated using the fabrication method by appropriately regulating the substrate temperature, the heating time, the gas ambience and the like in the second heating step.