Fabrication process control in optical devices

    公开(公告)号:US12228768B2

    公开(公告)日:2025-02-18

    申请号:US18063186

    申请日:2022-12-08

    Abstract: Methods of fabricating optical devices with high refractive index materials are disclosed. The method includes forming a first oxide layer on a substrate and forming a patterned template layer with first and second trenches on the first oxide layer. A material of the patterned template layer has a first refractive index. The method further includes forming a first portion of a waveguide and a first portion of an optical coupler within the first and second trenches, respectively, forming a second portion of the waveguide and a second portion of the optical coupler on a top surface of the patterned template layer, and depositing a cladding layer on the second portions of the waveguide and optical coupler. The waveguide and the optical coupler include materials with a second refractive index that is greater than the first refractive index.

    Optical coupling apparatus and methods of making same

    公开(公告)号:US11808998B2

    公开(公告)日:2023-11-07

    申请号:US18081525

    申请日:2022-12-14

    CPC classification number: G02B6/4215 G02B6/4206

    Abstract: Disclosed are apparatus and methods for optical coupling in optical communications. In one embodiment, an apparatus for optical coupling is disclosed. The apparatus includes: a planar layer; an array of scattering elements arranged in the planar layer at a plurality of intersections of a first set of concentric elliptical curves crossing with a second set of concentric elliptical curves rotated proximately 90 degrees to form a two-dimensional (2D) grating; a first taper structure formed in the planar layer connecting a first convex side of the 2D grating to a first waveguide; and a second taper structure formed in the planar layer connecting a second convex side of the 2D grating to a second waveguide. Each scattering element is a pillar into the planar layer. The pillar has a top surface whose shape is a concave polygon having at least 6 corners.

    Apparatus and circuits with dual polarization transistors and methods of fabricating the same

    公开(公告)号:US11631760B2

    公开(公告)日:2023-04-18

    申请号:US17222909

    申请日:2021-04-05

    Inventor: Chan-Hong Chern

    Abstract: Apparatus and circuits with dual polarization transistors and methods of fabricating the same are disclosed. In one example, a semiconductor structure is disclosed. The semiconductor structure includes: a substrate; an active layer that is formed over the substrate and comprises a first active portion having a first thickness and a second active portion having a second thickness; a first transistor comprising a first source region, a first drain region, and a first gate structure formed over the first active portion and between the first source region and the first drain region; and a second transistor comprising a second source region, a second drain region, and a second gate structure formed over the second active portion and between the second source region and the second drain region, wherein the first thickness is different from the second thickness.

    Optical coupling apparatus and methods of making same

    公开(公告)号:US11531173B2

    公开(公告)日:2022-12-20

    申请号:US17186661

    申请日:2021-02-26

    Abstract: Disclosed are apparatus and methods for optical coupling in optical communications. In one embodiment, an apparatus for optical coupling is disclosed. The apparatus includes: a planar layer; an array of scattering elements arranged in the planar layer at a plurality of intersections of a first set of concentric elliptical curves crossing with a second set of concentric elliptical curves rotated proximately 90 degrees to form a two-dimensional (2D) grating; a first taper structure formed in the planar layer connecting a first convex side of the 2D grating to a first waveguide; and a second taper structure formed in the planar layer connecting a second convex side of the 2D grating to a second waveguide. Each scattering element is a pillar into the planar layer. The pillar has a top surface whose shape is a concave polygon having at least 6 corners.

    Dynamic high voltage (HV) level shifter with temperature compensation for high-side gate driver

    公开(公告)号:US11522526B2

    公开(公告)日:2022-12-06

    申请号:US17221893

    申请日:2021-04-05

    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.

    Integrated optical devices and methos of forming the same

    公开(公告)号:US11009663B2

    公开(公告)日:2021-05-18

    申请号:US16524167

    申请日:2019-07-29

    Abstract: Integrated optical devices and methods of forming the same are disclosed. A method of forming an integrated optical device includes the following steps. A substrate is provided. The substrate includes, from bottom to top, a first semiconductor layer, an insulating layer and a second semiconductor layer. The second semiconductor layer is patterned to form a waveguide pattern. A surface smoothing treatment is performed to the waveguide pattern until a surface roughness Rz of the waveguide pattern is equal to or less than a desired value. A cladding layer is formed over the waveguide pattern.

    Dynamic high voltage (HV) level shifter with temperature compensation for high-side gate driver

    公开(公告)号:US11005453B2

    公开(公告)日:2021-05-11

    申请号:US16693596

    申请日:2019-11-25

    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.

    DYNAMIC HIGH VOLTAGE (HV) LEVEL SHIFTER WITH TEMPERATURE COMPENSATION FOR HIGH-SIDE GATE DRIVER

    公开(公告)号:US20200091895A1

    公开(公告)日:2020-03-19

    申请号:US16693596

    申请日:2019-11-25

    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.

    DYNAMIC HIGH VOLTAGE (HV) LEVEL SHIFTER WITH TEMPERATURE COMPENSATION FOR HIGH-SIDE GATE DRIVER

    公开(公告)号:US20190238119A1

    公开(公告)日:2019-08-01

    申请号:US16140982

    申请日:2018-09-25

    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.

Patent Agency Ranking