Abstract:
Disclosed herein is a composition comprising a structure (M1)a(ME)b(D1)c(D2)d(T)e(Q)f, wherein M1=R1R2R3SiO1/2; ME=R4R5RESiO1/2; D1=R6R7SiO2/2; D2=R8R9SiO2/2; T=R10SiO3/2; and Q=SiO4/2; wherein each RE is independently a monovalent hydrocarbon radical containing an epoxy group; R9 comprises a structure -L1-Si(R11)g(OR12)3-g or L2(D3)h(M2)i-L3-Si(R13)g′(OR14)3-g′, wherein L1, L2, and L3 are independently divalent linking groups; g and g′ independently have a value from 0 to 2; M2=R15R16R17SiO1/2; D3=R18R19SiO2/2; wherein R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, R16, R17, R18, and R19 are independently monovalent hydrocarbon radicals; wherein a, b, c, d, e, f, h, and i are stoichiometric subscripts that are zero or positive subject to the following limitations: b has a value of 2; d is greater than or equal to 1; when (a+c+e+f) is equal to zero, (b+d) is greater than or equal to 3; and when i=0, h is at least 1.
Abstract:
The invention relates to a high thermal efficiency, insulated glass unit structure sealed with a cured composition containing, inter alia, diorganopolysiloxane(s) and inorganic-organic nanocomposite(s), the cured composition exhibiting low permeability to gas(es).
Abstract:
This invention relates to a room temperature curable composition containing, inter alia, diorganopolysiloxane(s) and inorganic-organic nanocomposite(s), the cured composition exhibiting low permeability to gas(es).
Abstract:
This invention relates to a room temperature curable composition containing, inter alia, diorganopolysiloxane(s) and organic nanoclay(s), the cured composition exhibiting low permeability to gas(es).
Abstract:
The invention relates to an insulated glass unit having an increased service life. Wherein an outer glass pane and inner glass pane are sealed to a spacer to provide an improved gas impermeable space.
Abstract:
A composition includes a polycarbonate-polysiloxane block copolymer that has at least one polycarbonate block and at least one polysiloxane block, and a surface modifying agent that includes at least one polysiloxane segment. Increased levels of the surface modifying agent can be incorporated without compromising high transmittance and low haze. The compositions also exhibit improved hemocompatibility and are therefore useful for a variety of articles that may contact blood.
Abstract:
A method and system for lazily registering dynamically generated code and corresponding unwind information of a process. In one embodiment, the present invention detects a request for first unwind information related to first corresponding dynamically generated code. The present embodiment creates a module which includes data related to the first unwind information and the first corresponding dynamically generated code, and provides an application program interface (API) which allows the data to be registered such that dynamic registration of the first unwind information and the first corresponding dynamically generated code is enabled. The present embodiment also couples an API invocation code sequence to the first corresponding dynamically generated code such that upon execution of the first corresponding dynamically generated code, the API invocation code sequence instructs the API to facilitate registration of the data.
Abstract:
A cementitious composition is disclosed whereby visible efflorescence is prevented when formed into a cement masonry concrete unit. Efflorescence is controlled by incorporation of a polymer comprising a polyacrylic acid or salt or derivative thereof having an average molecular weight in the range of 5004-9,000, and more preferably in the average molecular weight range of 1,000 to 10,000.