Abstract:
The invention is directed to a method and an arrangement for controlling an internal combustion engine wherein a signal representing engine load is compared to a maximum value pregiven for at least one driver command range. Fault and emergency reactions are initiated when the measured signal value reaches or exceeds the maximum value.
Abstract:
An apparatus comprising a control device of a driving engine which can be actuated purely mechanically, for varying the operation of engine as well as via a control motor as needed, independently of the mechanical operation in a direction of reduced output of the driving engine. The apparatus includes a restoring spring which acts upon a first driver element connected to the operating element. Since the coupling spring is not subject to tension exerted by the restoring spring, the coupling spring can be embodied as relatively weak. The apparatus is particularly well-suited to motor vehicles equipped with traction control.
Abstract:
A measurement pickup comprising a housing having a side opening, a measuring element located in the housing, a connection cable extending through the side opening and connected with the measuring element, and a closing part located in the side opening closing the side opening and fixing the connection cable at least in one direction and a body of plastic material injected into the housing for sealing the measuring element.
Abstract:
Optical fluorophosphate glass which is based on Mg(PO.sub.3).sub.2, Ca(PO.sub.3).sub.2, Ba(PO.sub.3).sub.2, Al(PO.sub.3).sub.3, MgF.sub.2, CaF.sub.2, SrF.sub.2, AlF.sub.3, BaO and SrO and has a refractive index n.sub.e between 1.515 and 1.546, an Abbe value .nu..sub.e between 75.8 and 77.4 and a positive anomalous partial dispersion value .DELTA..nu..sub.e between 14.85 and 15.15.The glass comprises (in weight-%) 2.4-2.7 Mg; 4.5-4.9 Ca; 15.9-17.6 Sr; 20.2-22.3 Ba; 5.6-6.2 Al; 8.8-9.7 P; 22.0-24.3 F and 15.7-17.4 O. The improved physico-chemical parameters, such as linear expansion coefficient, glass transition temperature T.sub.g, density .zeta., Knoop-hardness HK, etc., are stated. Finally, a production process for this optical glass is described.
Abstract:
Optical fluorophosphate glass which is based on Mg(PO.sub.3).sub.2, Ca(PO.sub.3).sub.2, Ba(PO.sub.3).sub.2, Al(PO.sub.3).sub.3, MgF.sub.2, CaF.sub.2, SrF.sub.2, AlF.sub.3, BaO and SrO and has a refractive index n.sub.e between 1.515 and 1.546, an Abbe value .nu..sub.e between 75.8 and 77.4 and a positive anomalous partial dispersion value .DELTA..nu..sub.e between 14.85 and 15.15.The glass comprises (in weight-%) 2.4-2.7 Mg; 4.5-4.9 Ca; 15.9-17.6 Sr; 20.2-22.3 Ba; 5.6-6.2 Al; 8.8-9.7 P; 22.0-24.3 F and 15.7-17.4 O. The improved physico-chemical parameters, such as linear expansion coefficient, glass transition temperature T.sub.g, density .zeta., Knoop-hardness HK, etc., are stated. Finally, a production process for this optical glass is described.
Abstract:
Optical fluorophosphate glasses based on Ba(PO.sub.3).sub.2, Al(PO.sub.3).sub.3, alkaline earth metal fluorides and AlF.sub.3 are described which have a refactive index n.sub.e between 1.47 and 1.50, an Abbe-value .nu..sub.e between 85 and 80 and a positive anomalous partial dispersion value .DELTA..nu..sub.e between +17 and +22. They comprise (in wt.-%) 0.5-3 Mg, 8-10 Ca, 12-20 Sr, 9-12 Ba, 7-9 Al, 5-9 P, 8-12 O and 35-38 F. Ti, Na, K and H may additionally be present. The improved physico-chemical parameters (expansion coefficient, glass transition temperature, density, Knoop-hardness) and the transmission characteristics are given, and a process for producing these optical glasses is described.
Abstract:
A method for color control in printing presses having at least one first color measuring instrument and at least one second color measuring instrument, includes registering at least one first inking zone on a printing material with the first color measuring instrument and registering at least one other, second inking zone on the printing material with the second color measuring instrument. In a first step, a color difference between actual colorations of the first and second inking zones is calculated, in a second step, a color difference between an actual coloration of the first inking zone and a desired coloration of the second inking zone is calculated and, in a further step, the calculated color differences are added and supplied to a color control for the second inking zone.
Abstract:
The invention relates to melamine-formaldehyde condensates with thermoplastic properties that can be produced from formaldehyde and melamine derivatives, wherein at least one of the melamine derivatives organic radicals R have been used to substitute at least four of the total of six hydrogen atoms of the three melamine amino groups, and wherein the organic radicals R are mutually identical or different. The invention also relates to a process for production of the melamine-formaldehyde condensates, use thereof, and an analytical method for determining the constitution of the melamine-formaldehyde condensates.
Abstract:
A method for converting polarized color measured values to unpolarized color measured values or vice versa uses a computer. The conversion is carried out by the computer by using a pair of reference measured values determined in polarized and unpolarized form.
Abstract:
A method for converting polarized color measured values to unpolarized color measured values or vice versa uses a computer. The conversion is carried out by the computer by using a pair of reference measured values determined in polarized and unpolarized form.