Abstract:
Systems and techniques are provided for beamforming for wireless power transfer. A position of a second wireless power transfer device relative to a first wireless power transfer device may be determined. A beam may be simulated as being transmitted from the position of the second wireless power transfer device. Phases of a wave front of the simulated beam that would be received by elements of the first wireless power transfer device may be determined. A control signal for each of the elements for which phases were determined may be generated based on the determined phase of the wave front that would be received at the element. The control signal for each of the elements for which phases were determined may be supplied to the elements for which phases were determined. A waveform may be transmitted from the elements for which phases were determined based on the supplied control signal.
Abstract:
Systems and techniques are provided for an ultrasonic electrostatic device. A device may include a substrate comprising an indentation. A first electrode may be located within the indentation. A membrane may be affixed to the substrate and may cover the indentation. The membrane may include a second electrode. The first electrode and the second electrode may be electrically connected to a circuit such that the first electrode and the second electrode form a parallel plate capacitor.
Abstract:
Systems and techniques are provided for a multichannel waveform synthesis engine. A phase counter module counts to a value corresponding to a number of phases available, outputs a phase counter value indicating a current phase, and resets the phase counter value when the phase counter value reaches a phase counter reset value. Several channels each output a waveform. Each channel includes a phase module that receives the phase counter value output from the phase counter module, and activates an activation signal when the phase counter value indicates a phase assigned to the channel from the number of phases available. Each channel includes a pulse width module that receives the activation signal, and when the activation signal is activated, activates a waveform for a period of time indicated by a pulse width assigned to the channel, and deactivates the waveform after the period of time indicated by the pulse width assigned to the channel.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.