Abstract:
The invention relates to a method for building a 3D model of an area of interest on the surface of a planet. The method comprises providing a plurality of 2D images from satellites, where each 2D image out of the plurality of 2D images at least partly covers the area of interest. Also, each subarea of the area of interest is covered by at least two images, taken from different angles, out of the plurality of 2D images. Bundle adjustments are performed for the plurality of 2D images and the area of interest is divided into parts. For each part of the area of interest at least one combination and preferably all possible combinations out of two images covering that part of the area of interest are taken. Said two images are taken from the at least two images, taken from at least two different angles, out of the plurality of 2D images. Further, for each part of the area, point matching correspondence is established for a set of points for each such combination of two images. The sets of points are combined if more than one set of points exists. Even further, for each part of the area, a 3D model of said part of the area of interest is built based on the combined set of points. The 3D models from each part of the area of interest are combined to a 3D model of the whole area of interest. The invention also relates to a system, a computer program and a computer program product.
Abstract:
The invention relates to a method for decision support of a first combat aircraft in a duel situation with a second combat aircraft. The method comprises the steps of: a) determining (3) a first plurality of combat value parameters of the first combat aircraft (1) and determining (3) a second plurality of combat value parameters of the second combat aircraft (2), wherein the second combat aircraft (2) is different to the first combat aircraft (1), b) analyzing (4) the first and the second plurality of combat value parameters determined in the previous step (step a)) by fitting the first and the second plurality of combat value parameters to a predefined model, and c) combining (5) the first plurality of combat value parameters analyzed in the previous step (step b)) to calculate a first value and combining (5) the second plurality of combat value parameters analyzed in the previous step (step b)) to calculate a second value, wherein the first value and the second value are compared to each other to determine the optimum success probability data of the first combat aircraft (1) and of the second combat aircraft (2) adapted for decision support in the duel situation. In this way, a reliable and fast tool for the pilot is provided while the tool is easy to handle and assists the pilot in order to make a quick and efficient decision in duel situations.
Abstract:
A method for planning attacking targets to optimize a use of own available resources in a target area based upon information on own resources available for attacking and information on protected and non-protected targets located in the target area. Different attack tactics are collected in a first library. Different defense strategies are collected in a second library. A reward value is allotted to each target and threat in the target area. Each target and threat in the target area has a defense capability and a vulnerability. The different attack tactics for a chosen defense strategy are evaluated to find an optimal attack tactic having a highest possible accumulated value of target reward value combined with a defeat probability value. The found optimal attack tactic is utilized to create an attack plan involving information on resources needed, targets to attack and attacking directions and time delays.
Abstract:
The invention regards a plasma-enhanced active laminar flow actuator system (1) adapted to an aerodynamic surface (3) which has a nano-engineered composite material layer (5) comprising a set of electrodes arranged (7′, 7″) in at least an upper (P1) and a lower (P2) plane extending parallel with the aerodynamic surface (3); the electrodes (7′, 7″) comprising nano filaments (9); the electrodes (7′) of the upper plane (P1) are arranged in the aerodynamic surface (3) such that they define a smooth and hard aerodynamic surface (3); conductors (11, 11′) of nano filaments (9″) arranged for electrical communication between a control unit (13) and each of the electrodes (7′, 7″), wherein the control unit (13) is adapted to address current between cooperating electrodes (7′, 7″) of the upper and lower plane (P1, P2) from a current supply depending upon air flow characteristic signals fed from air flow sensor means (19).
Abstract:
The present invention relates to a method for determining a direction to a signal-emitting object by means of a platform comprising at least two antennas separated by a known distance. The method comprises said steps of: receiving, with each of said at least two antennas, a signal from said signal-emitting object at first positions, determining a first phase relation of said signal between said at least two antennas, receiving, with each of said at least two antennas, a signal from said signal-emitting object at at least second positions, determining at least a second phase relation of said signal between said at least two antennas, characterised by the steps of: determining change(s) in position(s) of at least one antenna of said at least two antennas, and determining a direction to a signal-emitting object based on said first phase relation, said at least second phase relation and said change(s) in position(s) of said at least one antenna. The invention further relates to a platform performing a determination of a direction to a signal-emitting object.
Abstract:
A forming device and a method of manufacture of a fillet of plastic for aircraft assemblies. The fillet has a pre-determined profile for filling a cavity of a structural element. The fillet is formed using a former of a forming device. The method includes applying at least one blank of a base material of plastic between at least two opposed press beds of the former and at least one of the press beds including an elongated groove. At least one press bed is towards another press bed, until the press beds are in position for completed compression of the fillet. Each groove for forming of the fillet generates a fillet in correspondence with the pre-determined profile. The press beds are separated from each other for releasing the formed fillet. The formed fillet is removed from the former. The formed fillet is applied in the cavity.
Abstract:
An active circulator for a microwave system. The microwave system includes at least one front-end arrangement. Each front-end arrangement includes a power amplifier function arranged to deliver an amplified output signal via a circulator function to an antenna in a transmit mode. A low noise amplifier function is arranged to amplify an input signal from the antenna via the circulator function in a receive mode. The circulator function is arranged to direct a signal flow between the transmit and receive modes. Each front-end arrangement includes one active circulator. The active circulator includes the power amplifier function, the low noise amplifier function and the circulator function of directing a signal flow. The functions integrated into one module. Also, a method to manufacture the active circulator.
Abstract:
The invention relates to a method for controlling a sensor in a combat aircraft (1) comprising the steps of: a) determining (3) direction and size of a defence zone around the combat aircraft (1) based on a plurality of characteristic parameters of an enemy combat aircraft (2), b) determining (4) direction and size of at least one offence zone around the combat aircraft (1) based on the plurality of characteristic parameters of the enemy combat aircraft (2), and c) controlling (5) the sensor in the combat aircraft (1) according to emission level and detection capacity within at least one of the defence zone and the at least one offence zone. In this way, the sensors are controlled reliably and thus the pilot can act and react mission-oriented.
Abstract:
The object of the present invention is to provide an inventive guidance system for tracking and guiding at least one object, wherein said guidance system comprises a base station (1) including an optical imaging system (3) configured to determine the angular position vector of said at least one object (5, 15), an optical communication link for transmitting guidance control commands from said base station (1) to said at least one object (5, 15), and steering means provided on said at least one object (5, 15) for adjusting the direction of said at least one object (5, 15) in response to said guidance control commands. The invention also provides a corresponding guiding method.
Abstract:
An air guide for a dispenser. At least one air scoop is configured to guide an air stream to a feeding out opening for chaffs on the dispenser in order to facilitate packages of chaffs to be released from the dispenser. A control unit is configured to control the air stream through the at least one air scoop.