Abstract:
A filtration assembly is provided for a fluid flowing in an engine or an apparatus that includes a tank on which a central tube is mounted for interaction with a filtration cartridge including an upper flange and a lower flange between which extends a filtration medium. The central tube is permanently mounted on a bearing member connected to the tank. The central tube bears a first seal and a second seal. The cartridge has a collar forming an extension of the lower flange, the collar being adapted for interaction with the first seal on the central tube in order to ensure tightness between the tube and the cartridge. The second seal is adapted for interaction with the bearing member and/or the collar in order to ensure tightness between the tank and the tube.
Abstract:
A filter element for purifying a fluid at risk of freezing such as a urea-water solution for exhaust gas after treatment has an annular filter body and a support body surrounded by the filter body. The support body is made of an elastomer and is able to yield in a radial inward direction to compensate volume expansion when the fluid freezes.
Abstract:
A freezing resistant liquid filter including a housing having a liquid inlet and a liquid outlet and a freezing compensating filter element disposed within the housing and including a folded filter medium having a plurality of interstices and freezing compressible elements located at the interstices.
Abstract:
Filter and replaceable filter leaf apparatus are provided. The filter includes a housing defining a cavity having fluid inlet and outlet ports and a lid member with a manifold coupled to the outlet port and being adapted to conduct a fluid flow between the outlet port and a plurality of attachment areas. Replaceable filter leafs are selectively movable through an opening into the housing cavity and attachable with the manifold at the plurality of attachment areas. The replaceable filter leafs include a filter envelope consisting of a filter panel, a nozzle member on the filter panel and defining a passageway adjacent an opening in the filter envelope for conducting fluids therethrough. The nozzle member is selectively attachable onto the manifold of the polishing filter apparatus at any one of the plurality of attachment areas.
Abstract:
A filter element may include a canister, a first cap coupled to a first end of the canister, and a second cap coupled to a second end of the canister. The filter element may further include an outer tubular member extending between the first cap and the second cap, and an inner tubular member. The outer and inner tubular members may each include a plurality of apertures. The filter element may further include filter media configured to promote separation of a first fluid from a second fluid as fluid passes through the filter media. The filter element may be configured such that fluid entering the filter element flows between an interior surface of the canister and an exterior surface of the filter media and through the filter media, such that a portion of the fluid flows into the outer tubular member but not into the inner tubular member.
Abstract:
Disclosed herein is a filter for use in connection with a swimming pool or spa. A device is provided that has a tube inlet at the top of a vessel. A lower end of the device is connected directly to an outlet of the filter. The device is designed to divert all or the majority of the fluid to move to the top of the filter before exiting the vessel.
Abstract:
A fluid conduit with layered and partial covering material thereon is disclosed. The fluid conduit may be used for processing and treatment of fluids which must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and particularly to the water table. The fluid conduit may be of many forms and types and may have attached thereto and configured thereon covering material in partial form and a selected number of layers. The fluid conduit may be a septic pipe of smooth wall, of corrugated form, and/or of any form of cross-sectional configuration including circular, elliptical, rectangular, triangular, or any other geometric shape. The fluid conduit may be used in combination with conduit in a drainage field or leaching system usually associated with a septic tank or septic system.
Abstract:
A filter element has a support grid structure with a first axial end and a second axial end. A filter medium surrounds annularly the support grid. The support grid has structural web members that are connected and form a hollow-cylindrical grid structure that surrounds a cylindrical interior. At least three of the structural web members or structural web sections connect to each other to define a through opening. A fluid flow is enabled in radial direction relative to a center axis of the hollow-cylindrical grid structure through the through openings. A first average opening cross-section of the through openings in a first region adjacent to a first axial end is greater than a second average opening cross-section of the through openings in a second region adjacent to the second axial end.
Abstract:
A backing net for a filter media is disclosed. The backing net includes a plurality of longitudinal beams and at least one cross beam. The height of at least one of the longitudinal beams varies along the length of the longitudinal beam such that said height is reduced towards the first end thereof. A filter media and a V-type filter including such backing net are also disclosed.
Abstract:
A filter element, assembly and method of filtering is disclosed. The filter element may comprise an outer filter having a top and a bottom, and an inner filter. The outer filter may define an interior space and a longitudinal axis. The interior space may extend from the top to the bottom of the outer filter along the longitudinal axis. The inner filter may be disposed inside the interior space. The inner filter may be offset along the longitudinal axis from the bottom of the outer filter. The offset may define a cavity disposed below the inner filter and adjacent to the bottom of the outer filter. The outer filter may be configured to guide fluid in a first direction and the inner filter may be configured to guide fluid in a second direction generally parallel to the longitudinal axis, the second direction different from the first direction.