Abstract:
A nickel powder with an average particle size of 0.05 to 1.0 μm, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature.
Abstract:
A zirconium-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum-zirconium melt in which a zirconium content of the aluminum-zirconium melt is less than 2.0 percent by weight. The aluminum-zirconium melt then powderized to form a zirconium-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
Abstract:
A method for producing a soft magnetic powdered core comprises a mixing step for forming a raw powder by adding a thermoplastic resin powder to a soft magnetic powder and mixing them, a compacting step for forming a compact by compacting the raw powder into a predetermined shape, a melting and setting step for the resin in which the resin of the compact is melted by heating to at least the melting point of the thermoplastic resin and the melted resin is set by cooling to a room temperature, and a crystallizing step for the resin in which the set resin is heated to not less than the exothermic onset temperature and not more than the endothermic onset temperature, which are measured by DSC analysis of the thermoplastic resin, and is cooled to a room temperature.
Abstract:
An additive manufacturing powder particle including a surface and at least one functional group formed on the surface, wherein the at least one functional group increases laser energy absorption of the additive manufacturing powder particle. The additive manufacturing particle is treated with plasma radiation to form hydroxyl functional groups on a surface of the additive manufacturing powder particle, where the hydroxyl functional groups have a molecular vibrational frequency corresponding to a laser wavenumber range of laser energy of an additive manufacturing process, and where the plasma radiation treating the additive manufacturing powder particles depends on the laser energy of the additive manufacturing process. Treating the additive manufacturing powder particle with the plasma radiation increases laser energy absorption of the additive manufacturing powder particle when the additive manufacturing particle is exposed to the laser energy, produced by a carbon dioxide laser, of the additive manufacturing process.
Abstract:
A magnetic powder contains a soft magnetic material represented by the following composition formula, in which an average particle size is 2 μm or more and 10 μm or less, and at least a surface layer is nanocrystallized,
FeaCubNbcSidBe
where, a, b, c, d, and e each indicate atomic percentage, 71.0 at %≤a≤76.0 at %, 0.5 at %≤b≤1.5 at %, 2.0 at %≤c≤4.0 at %, 11.0 at %≤d≤16.0 at %, and 8.0 at %≤e≤13.0 at %.
Abstract:
A method is provided for printing a three-dimensional object. The method comprises, depositing a layer of metal powder onto a powder bed of a three-dimensional printer. A liquid is heated to generate a vapor. The liquid is removed from the vapor to dry the vapor by heating the vapor above a condensation temperature of the liquid. The dry vapor is deposited onto the powder bed of the three-dimensional printer.
Abstract:
The present invention provides a production method of copper-carbon nanofibers, which can realize oxidation-resistant characteristics and process simplification, the production method comprising the steps of: forming a metal precursor-organic nanofiber comprising a metal precursor and an organic substance; and forming a metal-carbon nanofiber by performing a selective oxidation heat treatment to the metal precursor-organic nanofiber so as to simultaneously oxidize carbon of the organic substance and reduce the metal precursor to a metal, wherein the metal has a lower oxidation resistance than the carbon; the selective oxidation heat treatment is performed through a singly heat treatment step, not a plurality of heat treatment steps; and metal-carbon nanofibers with different structures may be formed according to the amount of partial oxygen pressure under which the selective oxidation heat treatment is performed.
Abstract:
The invention relates to a method for producing three-dimensional models by means of a layering technique, particulate build material being applied to a build space in a layer, and a binder fluid then being selectively applied to the build material, proceeding in layers, and these steps being repeated until the desired model is produced, a controlled air flow being conducted through the applied build material, as well as a device for carrying out the method and thus produced models.
Abstract:
A carrier-type heat-treatment apparatus including a furnace main body that includes heaters and a mesh belt that transports an object to be heat-treated into the furnace main body includes a gas pipe arranged inside the furnace main body, the gas pipe being configured to inject a gas into the furnace main body, in which a low-temperature zone and a high-temperature zone are provided inside the furnace main body with the gas, the low-temperature zone being provided on an entrance side of the furnace main body, the high-temperature zone being provided on an exit side of the furnace main body and having a temperature higher than the low-temperature zone.
Abstract:
A dielectric barrier discharge (DBD) plasma apparatus for synthesizing metal particles is provided. The DBD plasma apparatus includes an electrolyte vessel for receiving an electrolyte solution comprising metal ions; an electrode spaced-apart from the electrolyte vessel; a dielectric barrier interposed between the electrolyte vessel and the electrode such that, when the electrolyte solution is present in the electrolyte vessel, the dielectric barrier and an upper surface of the electrolyte solution are spaced-apart from each other and define a discharge area therebetween; and gas inlet and outlet ports in fluid communication with the discharge area such that supplying gas in the discharge area while applying an electrical potential difference between the electrode and the electrolyte solution cause a plasma to be produced onto the electrolyte solution, the plasma interacting with the metal ions and synthesizing metal particles. A method for synthesizing metal particles using a DBD plasma apparatus is also provided.