Physical quantity sensor and manufacturing method therefor
    41.
    发明授权
    Physical quantity sensor and manufacturing method therefor 失效
    物理量传感器及其制造方法

    公开(公告)号:US07727793B2

    公开(公告)日:2010-06-01

    申请号:US11543034

    申请日:2006-10-05

    Abstract: A physical quantity sensor includes a pair of physical quantity sensor chips that are inclined with respect to the bottom of an exterior mold package whose side surfaces are each inclined in a thickness direction by an angle ranging from 0° to 5° and are formed in proximity to the outer ends of the physical quantity sensor chips. It is possible to realize the inclination of stages without using molds, wherein absorption devices are used to absorb prescribed portions related to stages, which rotate about axial lines and are thus inclined with respect to a prescribed base. In manufacturing, a thin metal plate having a plurality of lead frames is placed on a base delimited by a clamp; then, intersecting points of intermediate portions formed between the lead frames are subjected to pressing so as to realize the inclination of stages.

    Abstract translation: 物理量传感器包括一对物理量传感器芯片,其相对于外部模具封装的底部倾斜,其侧表面各自在厚度方向上倾斜0°至5°的角度并且形成在接近 到物理量传感器芯片的外端。 可以在不使用模具的情况下实现阶段的倾斜,其中吸收装置用于吸收与围绕轴线旋转并且因此相对于规定的基座倾斜的阶段相关的规定部分。 在制造中,具有多个引线框架的薄金属板放置在由夹具限定的基座上; 然后,对形成在引线框架之间的中间部分的相交点进行压制,以实现级的倾斜。

    MICRO-ELECTRO-MECHANICAL SYSTEM DEVICE, OUT-OF-PLANE SENSOR AND METHOD FOR MAKING MICRO-ELECTRO-MECHANICAL SYSTEM DEVICE
    42.
    发明申请
    MICRO-ELECTRO-MECHANICAL SYSTEM DEVICE, OUT-OF-PLANE SENSOR AND METHOD FOR MAKING MICRO-ELECTRO-MECHANICAL SYSTEM DEVICE 有权
    微电子机械系统装置,平面外传感器和制造微电子机械系统装置的方法

    公开(公告)号:US20100116055A1

    公开(公告)日:2010-05-13

    申请号:US12270797

    申请日:2008-11-13

    Abstract: The present invention discloses a micro-electro-mechanical system (MEMS) device, comprising: a mass including a main body and two capacitor plates located at the two sides of the main body and connected with the main body, the two capacitor plates being at different elevation levels; an upper electrode located above one of the two capacitor plates, forming one capacitor therewith; and a lower electrode located below the other of the two capacitor plates, forming another capacitor therewith, wherein the upper and lower electrodes are misaligned with each other in a horizontal direction.

    Abstract translation: 本发明公开了一种微电子机械系统(MEMS)装置,其特征在于,包括:主体和两个位于主体两侧并与主体连接的电容器板的质量体,两个电容器板位于 不同高程水平; 位于两个电容器板之一上方的上电极,与其形成一个电容器; 以及位于两个电容器板的另一个下方的下电极,与其形成另一个电容器,其中上电极和下电极在水平方向上彼此不对准。

    Angular velocity sensor and angular velocity sensing device
    43.
    发明授权
    Angular velocity sensor and angular velocity sensing device 有权
    角速度传感器和角速度检测装置

    公开(公告)号:US07714486B2

    公开(公告)日:2010-05-11

    申请号:US12078050

    申请日:2008-03-26

    Abstract: The present invention provides an angular velocity sensor in which higher sensitivity for sensors is available even with a smaller base portion. The angular velocity sensor includes a fixed portion fixed to the top surface of a sensor element supporting portion of a casing, an upper detection arm and a lower detection arm, each of them being connected to the fixed portion on sides opposite to each other and extending along a plane parallel to the top surface of the sensor element supporting portion, and a pair of upper vibration arms connected to the fixed portion in such a manner as to form a pair of arms with the upper detection arm in between and extending in a direction parallel to the extending direction of the upper detection arm.

    Abstract translation: 本发明提供了一种角速度传感器,其中传感器的更高的灵敏度即使在较小的基部也可获得。 角速度传感器包括固定到壳体的传感器元件支撑部分的上表面的固定部分,上检测臂和下检测臂,它们各自连接到彼此相对的侧面上的固定部分,并且延伸 沿着平行于传感器元件支撑部分的顶表面的平面,以及一对上部振动臂,其以固定部分的方式连接,以便形成一对臂,其中上部检测臂在其中并且在方向 平行于上检测臂的延伸方向。

    TEMPERATURE-COMPENSATED MICRO-ELECTROMECHANICAL DEVICE, AND METHOD OF TEMPERATURE COMPENSATION IN A MICRO-ELECTROMECHANICAL DEVICE
    44.
    发明申请
    TEMPERATURE-COMPENSATED MICRO-ELECTROMECHANICAL DEVICE, AND METHOD OF TEMPERATURE COMPENSATION IN A MICRO-ELECTROMECHANICAL DEVICE 有权
    温度补偿型微电化学装置及微机电装置中的温度补偿方法

    公开(公告)号:US20100107391A1

    公开(公告)日:2010-05-06

    申请号:US12683888

    申请日:2010-01-07

    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.

    Abstract translation: 微机电装置包括半导体衬底,其中第一微结构和第二参考微结构被集成。 第一微结构和第二微结构被布置在基板中,以便由于基板的热膨胀而产生相等的应变。 此外,第一微结构相对于基板设置有可移动部件和固定部件,而第二微结构具有与第一微结构基本对称的形状,但是相对于基板固定。 通过从第一微结构的电特性减去第一微结构的电特性的变化,可以补偿由热膨胀或收缩的变化引起的第一微结构的电特性的变化。

    MICROMECHANICAL DEVICE WHICH HAS CAVITIES HAVING DIFFERENT INTERNAL ATMOSPHERIC PRESSURES
    45.
    发明申请
    MICROMECHANICAL DEVICE WHICH HAS CAVITIES HAVING DIFFERENT INTERNAL ATMOSPHERIC PRESSURES 有权
    具有不同内部大气压力的微生物装置

    公开(公告)号:US20100028618A1

    公开(公告)日:2010-02-04

    申请号:US12535243

    申请日:2009-08-04

    Abstract: A micromechanical device having a substrate wafer has at least one first cavity and one second cavity, the cavities being hermetically separated from each other, the first cavity having a different internal atmospheric pressure than the second cavity. The cavities are capped by a thin film cap. A method is for manufacturing a micromechanical device which has a thin film cap having cavities of different internal atmospheric pressures.

    Abstract translation: 具有衬底晶片的微机械装置具有至少一个第一空腔和一个第二空腔,空腔彼此气密地分离,第一空腔具有与第二空腔不同的内部大气压力。 空腔被薄膜帽盖住。 一种用于制造具有具有不同内部大气压力的空腔的薄膜盖的微机械装置的方法。

    Polysilicon Deposition and Anneal Process Enabling Thick Polysilicon Films for MEMS Applications
    46.
    发明申请
    Polysilicon Deposition and Anneal Process Enabling Thick Polysilicon Films for MEMS Applications 有权
    用于MEMS应用的多晶硅沉积和退火工艺使厚的多晶硅膜

    公开(公告)号:US20090042372A1

    公开(公告)日:2009-02-12

    申请号:US12098052

    申请日:2008-04-04

    Abstract: A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100° C. or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.

    Abstract translation: 形成用于MEMS惯性传感器的厚多晶硅层的方法包括在高温环境中在衬底上形成第一非晶多晶硅膜一段时间,使得非晶多晶硅膜的一部分经历结晶并且晶粒生长至少接近 底物。 该方法还包括在第一非晶多晶硅膜上形成氧化物层,在约1100℃或更高的环境中退火第一非晶多晶硅膜以产生结晶膜,并除去氧化物层。 最后,该方法包括在高温环境下在晶体多晶硅膜的表面上形成第二非晶多晶硅膜一段时间,使得第二非晶多晶硅膜的一部分在至少在表面附近发生结晶和晶粒生长 晶体多晶硅膜。

    Electrical contact for a MEMS device and method of making
    47.
    发明授权
    Electrical contact for a MEMS device and method of making 有权
    MEMS器件的电接触和制造方法

    公开(公告)号:US07294552B2

    公开(公告)日:2007-11-13

    申请号:US11214380

    申请日:2005-08-29

    CPC classification number: B81B7/0006 B81B2201/025 G01P15/0802 G01P15/125

    Abstract: A method for making a subsurface electrical contact on a micro-electrical-mechanical-systems (MEMS) device. The contact is formed by depositing a layer of polycrystalline silicon onto a surface within a cavity buried under a device silicon layer. The polycrystalline silicon layer is deposited in the cavity through holes etched through the device silicon and reseals the cavity during the polycrystalline silicon deposition step. The polycrystalline silicon layer can then be masked and etched, or etched back to expose the device layer of the micromachined device. Through the layer of polycrystalline silicon, a center hub of the device may be electrically contacted.

    Abstract translation: 一种用于在微电子机械系统(MEMS)装置上制造地下电接触的方法。 接触是通过将多晶硅层沉积在掩埋在器件硅层下面的腔内的表面上而形成的。 多晶硅层通过穿过器件硅蚀刻的孔沉积在空腔中,并在多晶硅沉积步骤期间再吸收空腔。 然后可以对多晶硅层进行掩模蚀刻或蚀刻,以暴露微机械装置的器件层。 通过多晶硅层,器件的中心毂可以电接触。

    Assembly process for out-of-plane MEMS and three-axis sensors
    48.
    发明申请
    Assembly process for out-of-plane MEMS and three-axis sensors 审中-公开
    外置MEMS和三轴传感器的装配过程

    公开(公告)号:US20070087474A1

    公开(公告)日:2007-04-19

    申请号:US11541072

    申请日:2006-09-29

    Abstract: A method of assembling a three dimensional micromachined structure comprising the steps of defining a cavity in a holder wafer having a thick upper layer, providing a plurality of fingers in the thick upper layer extending from the holder wafer into the cavity, and disposing an out-of-plane wafer into the cavity in the holder wafer in engagement with the fingers to hold the out-of-plane wafer in place in an out-of-plane position with respect to the holder wafer. The invention also includes an apparatus made according to any combination of the above method steps and/or the structure of the apparatus which is fabricated from any combination of those method steps.

    Abstract translation: 一种组装三维微加工结构的方法,包括以下步骤:在具有较厚上层的保持器晶片中限定空腔,在从所述保持器晶片延伸到所述腔中的所述较厚上层中提供多个指状物, 平面晶片进入保持器晶片中的与指状物接合的空腔中,以将面外晶片相对于保持器晶片保持在平面外的位置。 本发明还包括根据上述方法步骤的任何组合制造的装置和/或由这些方法步骤的任何组合制造的装置的结构。

    DISPLACEMENT DETECTION DEVICE
    49.
    发明申请
    DISPLACEMENT DETECTION DEVICE 审中-公开
    位移检测装置

    公开(公告)号:US20070063297A1

    公开(公告)日:2007-03-22

    申请号:US11467571

    申请日:2006-08-28

    Abstract: In a displacement detection device having an IC chip for a regulation plate, silicon broken pieces might drop from loose chippings during assembling or using the device and affect properties of the displacement detection device. By setting an angle of grinding traces on an IC chip wafer of chip with a vertical line on side ridges of the IC chip to less than 45 degrees, more preferably 10 to 45 degrees, the chippings including loose chippings can be reduced on the side ridges of the IC chip. Using of an IC chip having loose chippings on side ridges for a regulation plate can be avoided, and a highly reliable displacement detection device can be provided.

    Abstract translation: 在具有用于调节板的IC芯片的位移检测装置中,在组装或使用该装置期间,硅碎片可能从松散的碎屑中掉落并影响位移检测装置的特性。 通过将IC芯片的侧脊上的垂直线的芯片的IC芯片晶片上的研磨迹线的角度设定为小于45度,更优选为10〜45度,可以减少侧脊的切屑,包括松散的切屑 的IC芯片。 可以避免在调整板的侧脊上使用具有松散切屑的IC芯片,并且可以提供高度可靠的位移检测装置。

    Electrical contact for a MEMS device and method of making

    公开(公告)号:US20070048888A1

    公开(公告)日:2007-03-01

    申请号:US11214380

    申请日:2005-08-29

    Inventor: John Christenson

    CPC classification number: B81B7/0006 B81B2201/025 G01P15/0802 G01P15/125

    Abstract: A method for making a subsurface electrical contact on a micro-electrical-mechanical-systems (MEMS) device. The contact is formed by depositing a layer of polycrystalline silicon onto a surface within a cavity buried under a device silicon layer. The polycrystalline silicon layer is deposited in the cavity through holes etched through the device silicon and reseals the cavity during the polycrystalline silicon deposition step. The polycrystalline silicon layer can then be masked and etched, or etched back to expose the device layer of the micromachined device. Through the layer of polycrystalline silicon, a center hub of the device may be electrically contacted.

Patent Agency Ranking