Abstract:
Apparatus for the generation of ozone by electrostatic discharge. An array of glass tubes are provided each containing a conductive rod therein serving as a core. Adjacent tubes are parallel to each other and the conductive rod of each tube is connected to the secondary terminal of a high voltage transformer. The tubes containing the conductive rods serve as an electrode when the voltage transformer is activated thereby creating an electrostatic field. Oxygen molecules in the electrostatic field are transformed to form ozone molecules. The apparatus can be applied to deodorizing an enclosed space with the addition of a fan to feed oxygen past the tube array and distribute the ozone that is generated. The apparatus also has an odor emitting chamber to prevent excess ozone build up after operation.
Abstract:
In modern ozone generators, high power densities are achievable when dielectrics (3) based on ceramics or filled plastic dielectrics and corresponding gap widths and dual cooling are used. With respect to efficiency, such ozone generators are inferior to those with a glass dielectric.To improve the efficiency and the resistance to the discharge attack, it is proposed to glaze the titanium oxide ceramic on the surface and to coat the plastic dielectrics with a high-temperature ceramic adhesive based on SiO.sub.2.
Abstract:
The ozone generator having in combination a first tubular electrode surrounded by a tubular dielectric which, in turn, is surrounded by a second tubular electrode. Entry of air to be ozonized occurs into a first end of the first tubular electrode and, through a pattern of perforations, is permitted to escape therefrom into an annular volume between the first tubular electrode and the tubular dielectric. The first tubular electrode is centrally, radially, sealed so as to form two chemically and electrically separate chambers. The second or output chamber of the first tubular electrode is provided with a pattern of perforations which permits re-entry of the air, which has been ozonized while exposed to a voltage across the annular volume between the outside of the first electrode and the dielectric, to the second or output part of the first tubular electric.
Abstract:
My invention relates to the use of an inert dielectric solvent liquid of fully halogenated fluorocarbon as the solvent for dissolving under pressure air and oxygen; which liquid acts as the dielectric in an ozone generator; and retains the ozone produced in the corona of the generator in solution in the liquid dielectric, until the pressure is reduced.For commercial applications, ozone is generated at the point of use by passing oxygen, or oxygen containing gas such as air, through a high-energy electrical discharge called Corona.The Corona discharge principle is based on a high voltage alternating current between two electrodes which are separated by a layer of dielectric material and a narrow gap through which the oxygen bearing gas is passed. The dielectric is necessary to stabilize the discharge over the entire electrode area so that it does not localize as an intense arc. In the present corona generation of ozone, a substantial fraction of the input energy is converted to heat, which must be removed by heat exchanger.My invention replaces the dielectric of solid materials; with a dielectric liquid which not only acts as the dielectric, but when compounds such as fluorocarbons are used the oxygen is carried through the corona as dissolved oxygen in solution in the dielectric, which also absorbes the excess heat produced, thus cooling the generator. The generator is operated at a superatmospheric pressure, which permits automatic stripping of the ozone by reducing the pressure following the generator.
Abstract:
An improved ozone generator having at least one dielectric layer between spaced-apart electrodes and having a corona chamber with dielectric solid adsorbent particles disposed in the corona chamber for selectively adsorbing ozone.
Abstract:
A corona generator method and apparatus preferably for generating ozone, employing a plurality of corona generating cells each comprising a pair of parallel spaced-apart electrodes having a fired-on coating of porcelain enamel. The electrodes are connected to an AC voltage source of sufficient voltage to generate a corona discharge, and an oxygen-containing gas is passed between the electrodes to generate ozone. A high concentration ozone is produced as well as a large quantity of ozone, without water cooling, and at voltages of approximately 6,000 volts. An equation setting forth, for the first time, the interrelationships between the various parameters in a corona generator is derived by Applicant. According to the invention, the corona power is maximized by maximizing the expression Epsilon /Td, where epsilon is the dielectric constant of te porcelain enamel coating and Td is the dielectric thickness.
Abstract:
Corrosion Resistant Ozone Generators, including ozone generating chips, for various purposes including spas, pools and jetted tubs as well as methods for making and using such Corrosion Resistant Ozone Generators.