Abstract:
The present invention aims at providing an air conditioner used in an electric vehicle which can exert a sufficient cooling performance without enlarging the size of a motor for driving a compressor or supplying an excessive amount of driving current to the motor. The air conditioner of the invention is provided with a condenser fan 8 for cooling a condenser 4 and a motor 9 for driving the condenser fan 8. A driving current Ap of a motor 3 for driving a compressor 2 is detected and compared with respect to reference currents A1 and A2 to select a driving current Vd0 (low voltage), Vd1 (moderate voltage) or Vd2 (high voltage) for controlling the rotation speed of the condenser motor 9. Since the increase in the load put on the compressor 2 caused by an increase in the temperature of the gas inside the condenser 4 can be suppressed by the cooling effect of the condenser 4 owing to the rotation of the condenser fan 8, a rotation speed of the compressor 2 necessary to achieve the predetermined temperature can be obtained without providing a high driving current to the motor 3.
Abstract:
A hybrid compressor selectively driven by an engine and an electric motor. The hybrid compressor includes a variable displacement compression mechanism. When the compression mechanism is driven by the motor, the cooling capacity of a refrigeration circuit that includes the hybrid compressor is adjusted by controlling the inclination of the swash plate and the motor speed. In the control procedure, the inclination angle of the swash plate and the motor speed are controlled so that the compression mechanism and the motor are most efficiently operated to achieve the required cooling capacity. Therefore, the hybrid compressor is constantly operated with maximum efficiency.
Abstract:
A method for control of the drive means for a reciprocating piston pump delivering liquid to a spring loaded piston liquid accumulator providing high volume compliance whereby the accumulator liquid volume is controlled within narrow limits by continuous control of power to the pump drive motor. The accumulator achieves high volume compliance by arranging the kinematics of a main spring loading the accumulator piston to have a negative spring rate equal to the sum of all other positive spring rates produced by a second spring used to adjust the accumulator pressure, by the diaphragm (piston), and by a flexure support for a sensor lever. This sensor lever moves with the accumulator diaphragm to actuate an optical sensor producing an electric signal indicative of small changes in liquid volume in the accumulator. This signal in turn continuously modulates the power to the motor driving the pump so as to maintain the accumulator liquid volume close to a datum value during a large portion of the pump delivery cycle. This close control of liquid volume in a high compliance accumulator provides substantially constant pulse free pressure liquid delivery from a pulsatile pump. The second spring may be adjusted to modify this constant pressure without disturbing the balance between positive and negative spring rates. Adjustment may be manual or automatic in response to liquid temperature whereby liquid pressure is automatically increased with lower liquid temperatures to compensate for increased liquid viscosity to maintain liquid flow substantially constant through an apparatus such as flow cytometry used for particle analysis or particle sorting.
Abstract:
A fluid pumping apparatus (10) includes a soft start valve (16) coupled with the outlet of a pump (14) driven by an electric motor (12) for reducing the startup current of the motor (12). The preferred valve (16) includes a fluid chamber (32), a valve operator in the nature of a ball (22) shiftable in the chamber (32) between the inlet (36) and a valve seat (48), and a biasing assembly (24) including an axially shiftable rod (54) and a spring (56) for biasing the rod (54) against the ball (22) in order to bias the ball (22) toward the chamber inlet (36). Upon startup, the valve (16) provides a reduced start pressure, less than the pump pressure under load, at the inlet (36) as the operator (22) moves toward the seat (48). The chamber (32) presents a volume sufficient for the valve (16) to provide the start pressure long enough for the motor (12) to achieve synchronous speed, thereby reducing motor startup current.
Abstract:
A liquid supply system including a diaphragm pump, a novel liquid accumulator providing exceptionally high volume compliance, and a control of accumulator volume within narrow limits by continuous control of the pump motor. The accumulator achieves high volume compliance by arranging the kinematics of a main spring loading the accumulator to have a negative spring rate equal to the sum of all other positive spring rates produced by a second spring used to adjust the accumulator pressure, by the diaphragm, and by a pivot for a sensor lever. This lever moves with the diaphragm to actuate an optical sensor producing an signal indicative of small changes in liquid volume in the accumulator. This signal continuously modulates the power to the motor driving the pump so as to maintain the accumulator volume lose to a datum valve. This close control of liquid volume in a high compliance accumulator provides substantially pulse-free constant pressure liquid delivery from a pulsatile pump. The second spring may be adjusted to modify this constant pressure without disturbing the balance between positive and negative spring rates. Adjustment may be automatic in response to a variable such as liquid temperature whereby liquid pressure is automatically increased with lower liquid temperature to maintain liquid flow substantially constant through a flow cytometry apparatus used for particle analysis.
Abstract:
A memory stores, in advance, at least a first V/F pattern corresponding to an air conditioning load and having reference voltage and frequency characteristics, and a second V/F pattern having voltage and frequency characteristics lower than those of the first V/F pattern in a starting region of a variable-capacity compressor for driving a refrigeration cycle. A detector detects an over current supplied to an inverter for driving the compressor. A controller stops the compressor through the inverter when the detector detects the over current, and restarts or holds the compressor through the inverter in accordance with the detection count of the over current. The compressor is restarted with the first V/F pattern from the memory when the detection count is smaller than a first predetermined count, and when the detection count reaches a second predetermined count larger than the first predetermined count. The compressor is restarted with reading out the second V/F pattern from the memory while the detection count is larger than the first predetermined count and is smaller than the second predetermined count. The compressor is held when the detection count reaches a third predetermined count obtained by adding "1" to the second predetermined count, thereby confirming an abnormality of and allowing determination whether the abnormality occurs in the inverter or in the compressor.
Abstract:
A control system may include circuitry configured to: a deterioration level estimation unit configured to estimate deterioration levels of pumping devices based on information about driving forces of the pumping devices; a selection unit configured to select a pumping device from the pumping devices based on a comparison of the estimated deterioration levels estimated by the deterioration level estimation unit; and a pumping control unit configured to control the selected pumping device selected by the selection unit to pump fluid.
Abstract:
A method for operating a pump includes establishing a pump limit characteristics diagram by mapping a first system parameter (P1) as a function of a second system parameter (P2) to identify a permissible operating region of the pump; for each first system parameter value (P10), identifying a minimum allowable second system parameter value (P20); monitoring the first system parameter (P1) and identifying a minimum allowable second system parameter value (P20) corresponding to the monitored first system parameter value (P1m); monitoring the second system parameter (P2) and comparing the monitored second system parameter value (P2m) with the identified minimum allowable second system parameter value (P20); and regulating a control valve that controls fluid flow through a return line connecting the suction and discharge sides of the pump so that the monitored second system parameter value (P2m) does not fall below the minimum allowable second system parameter value (P20).
Abstract:
A driving circuit of fluid pump module includes a microprocessor, a primary boost circuit, and a pump driving circuit is provided. The microprocessor receives an output signal with a large-width variable rectangular waveform, a driving voltage, a first detection current-feedback signal, and a second detection current-feedback signal. The primary boost circuit converts an inputted driving voltage into a direct current with a certain high voltage. The pump driving circuit receives the certain high voltage and is connected with the microprocessor to receive the voltage control signal and the pulse-width modulation (PWM) signal. The secondary boost circuit receives the certain high voltage to boost the certain high voltage into a working voltage for the fluid pump. The operation driving circuit receives the working voltage and provides the pulse-width modulation signal for the fluid pump through the second detection current-feedback signal.
Abstract:
A processing chamber is connected to a lock chamber. For evacuating the lock chamber and/or the processing chamber a vacuum pump system is provided. The latter comprises a vacuum pump equipment having at least one vacuum pump. Further, the vacuum pump system comprises a valve device for connection to the lock chamber as well as a controller. For noise reduction, a cyclically occurring operating parameter is determined by means of the controller. From said parameter it is determined at which point in time the valve is opened such that temporally before the opening of the valve the rotational speed of at least one of the vacuum pumps can be reduced. This results in a considerable noise reduction at continuing good pump-out times.