Abstract:
A system for storing natural gas comprises a plurality of straight sections of tube. The plurality of straight sections of tube are dense packed. The plurality of straight sections of tube are configured to fill a designated volume.
Abstract:
Device for supplying fluid comprising a source tank for storing gaseous fuel at a cryogenic temperature in the form of a liquid-gas mixture, a cryogenic pump, the pump comprising a suction inlet connected to the lower part of the tank via a suction line, a high-pressure first outlet intended to supply high-pressure fluid to a user and a degassing second outlet connected to the upper part of the tank via a return pipe, the device being characterized in that it comprises a cryogenic buffer storage volume, a first pipe connecting the lower part of the buffer storage volume to the tank and a second pipe connecting the upper part of the tank to the buffer storage volume, and in that the device comprises a liquefaction member for liquefying the gas in the buffer storage volume.
Abstract:
A composite pressure vessel includes a liner to contain a pressurized fluid and a composite layer formed on at least a portion of an exterior surface of liner. The composite layer includes a third generation advanced high strength steel filament reinforcement embedded in a polymer matrix.
Abstract:
A pressure vessel refuelling system enables fast refuelling of Compressed Natural Gas (CNG) fuel tanks. The system includes a pressure vessel having a gas inlet/outlet port and a liquid inlet/outlet port; a first liquid at least partially filling the pressure vessel; a liquid layer of a second liquid floating on top of the first liquid, wherein the second liquid is immiscible with the first liquid; a gas at least partially filling the pressure vessel above the liquid layer of the second liquid, the gas in fluid communication with the gas inlet/outlet; and a pump in fluid communication with the liquid inlet/outlet of the pressure vessel, whereby the first liquid can be pumped or returned to/from storage into or out of the pressure vessel.
Abstract:
A system includes a plurality of sub-terrain holes, a plurality of cylindrical storage sleeves disposed within the plurality of sub-terrain holes and each having a top end a bottom end, and a pressure release disposed in each of the top end and the bottom end of the plurality of cylindrical storage sleeves to seal the top end and the bottom end.
Abstract:
Embodiments of the disclosure may include a dispenser for dispensing a liquid. The dispenser may include a measurement chamber configured to receive the liquid, a temperature probe positioned within the measurement chamber, and a capacitance probe positioned within the measurement chamber. The capacitance probe may house the temperature probe. The dispenser may also include a first conduit fluidly coupled to the measurement chamber and configured to deliver the liquid out of the dispenser.
Abstract:
According to some embodiments, a cryogenic storage tank includes a manway formed in a body of the cryogenic storage tank. An inner manway lid is coupled to an inner wall of the cryogenic storage tank and disposed over at least a portion of the manway. An outer manway lid is coupled to an outer wall of the cryogenic storage tank and disposed over at least a portion of the manway. The inner and outer manway lids are configured to retain pressure within the cryogenic storage tank.
Abstract:
A catalytic tank heater includes a catalytic heating element supported on an LPG tank by a support structure that holds the element in a position facing the tank. Vapor from the tank is provided as fuel to the heating element, and is regulated to increase heat output as tank pressure drops. The heating element is internally separated into a pilot heater and a main heater, with respective separate fuel inlets. The pilot heater remains in continual operation, but the main heater is operated only while tank pressure is below a threshold. Operation of the pilot heater keeps a portion of the catalyst hot, so that, when tank pressure drops below the threshold, and fuel is supplied to the main heater, catalytic combustion quickly expands from the area surrounding the pilot heater to the remainder of the catalyst.
Abstract:
Methods and apparatus for offloading CNG from high-pressure storage vessels (22) are provided. The methods and apparatus are operable to warm the offloaded CNG either before or after a letdown in pressure to ensure that the delivered product is gaseous and that delivery of condensed products to downstream equipment is avoided. Particularly, a heating assembly (32) configured to warm a stream offloaded from a vessel (22) and flowing through a coil-shaped conduit (84) by infrared energy emitted by one or more heating elements (70) is provided upstream or downstream of a pressure reduction device (50).
Abstract:
An energy-accumulation apparatus includes a variable-buoyancy assembly configured to be selectively buoyant in a body of water. The energy-accumulation apparatus also includes a delivery assembly coupled to the variable-buoyancy assembly. The delivery assembly is configured to deliver the variable-buoyancy assembly within the body of water between a first position to a second position.