Abstract:
The invention provides a thin reflective plate having cholesteric liquid crystal that can prevent or reduce a decrease of reflection efficiency. A reflective plate includes a cholesteric liquid crystal layer, and the cholesteric liquid crystal layer includes a plurality of regions in which the helical axes of the cholesteric liquid crystal are aligned in different directions in the plane of a substrate, and therefore, the regions can reflect color light components having different wavelengths. Consequently, the cholesteric liquid crystal layer can reflect light formed of light components of different colors (for example, white light) as a whole. When the reflective plate is applied to a reflective liquid crystal display device or the like, it is possible to appropriately reflect white light for display.
Abstract:
A liquid crystal display improves light utilization efficiency with a cholesteric liquid crystal filter to ensure color density enough to enable both transmission and reflection type displays. The display comprises a liquid crystal display device comprising a liquid crystal layer between transparent substrates, a voltage applying electrode, a driving circuit, an illumination light source, and a pair of circularly polarizing plates. A cholesteric liquid crystal filter semitransparent to red, green and blue wavelength ranges is located on the illumination light-directing side. The liquid crystal layer viewing side has a cholesteric liquid crystal color filter array capable of transmitting red, green and blue wavelength ranges and reflecting light in other wavelength ranges depending on a pixel arrangement, and absorption type color filter array is located in alignment therewith and capable of transmitting only red, green and blue wavelength ranges and absorbing light in other wavelengths.
Abstract:
The method of making an optical body includes coating a mixture that includes a plurality of cholesteric liquid crystal compositions, and a solvent on a substrate. Each cholesteric liquid crystal composition is different. A plurality of layers is formed on the substrate. Each layer includes a majority of one of the cholesteric liquid crystal compositions.
Abstract:
A polarized light extraction optical element is formed by a light-transmitting base material and a polarization separation layer laminated thereonto, this polarization separation layer being a liquid crystal layer made of a cholesteric liquid crystal. The thickness of the liquid crystal layer is smaller than the thickness that would be required to achieve a maximum reflectivity, so that part of one of the right and left circularly polarized light components is reflected with a reflectivity smaller than the maximum reflectivity.
Abstract:
Display apparatuses are shown capable of displaying information in a reflective mode using only ambient light and in a transmissive mode using a light source. In one embodiment, the display apparatus includes a reflecting polarizer disposed between a light modulating layer and an isotropic light cavity. The light cavity reflects incident light with a first degree of depolarization. The reflecting polarizer reflects light with a second degree of depolarization for at least one polarization that is greater than the first degree of depolarization. In another embodiment of the display apparatus, a microstructured film is included above a light cavity and below a light modulating system where the microstructured film includes sawtooth formations having at least a tilted surface. In another embodiment of a dual-mode display device, the display includes a cholesteric reflecting polarizer disposed between a light modulating layer and a light cavity where the light cavity causes a polarization phase shift upon reflectance.
Abstract:
The liquid crystal switchable color filter switches between three color bands and is preferably used for time-sequential color devices, as for example projection devices, direct view displays and video cameras. The color filter employs circularly polarizing selective reflection bands of at least four cholesteric filters (89, 91, 93, 95) together with three liquid crystal switches (81, 83, 85) and related retarder layers. Between the first and the second as well as between the third and the fourth cholesteric filter an additional half-wave plate (111, 113) is provided, which makes it possible to use cholesteric filters having all the same handedness. Furthermore, for the blocking state of a color band the optic axis of the corresponding liquid crystal switch is parallel or perpendicular to the polarization direction. This concept simplifies production and still exhibits excellent properties for the color switch. Moreover, it advantageously allows overlapping color transmission bands thus improving the light efficiency.
Abstract:
A polarization light splitting film having a light receiving side and a light transmitting side. The polarization light splitting film includes an optical rotation selection layer at the light receiving side for reflecting one of right and left circularly polarized components of a light beam that is incident on the light receiving side and for transmitting the other one of the right and left circular polarization components of the light beam, and a quarter-wave layer laminated over the optical rotation selection layer at the light transmitting side.
Abstract:
The present invention relates to a liquid crystal display, more specifically, relates to a full color cholesteric display employing circularly polarized micro-color filter which is composed of polymeric cholesteric thin film. The display has a long time memory and excellent characteristics of brightness and contrast. A built-in cholesteric color filter structure provides a full color gamut of circular polarization. A cholesteric liquid crystal cell structure, as a circular polarization modulator, provides optical ON and OFF states respectively with its one texture as a circular polarizer and the other texture as a depolarizer. Both of those two textures are electric field controllable.
Abstract:
A printed layer having opening portions is provided at a position opposite to an observer of a liquid crystal display device, a display is performed by use of absorption or chromaticity of the printed layer when an external light source is utilized, and a display is performed by transmitting light through the opening portions of the printed layer when an auxiliary light source is turned on, and further different voltages between when the external light source is utilized and when the auxiliary light source is used are applied to a liquid crystal layer by a gradation reversal circuit. Moreover, reversal of brightness and darkness of a display by the use of the external light source and the auxiliary light source is eliminated by a polarizing film or a cholesteric liquid crystal polymer film disposed on the rear face of the liquid crystal display device, thereby enabling a liquid crystal display device with excellent visibility.
Abstract:
Display apparatuses are shown capable of displaying information in a reflective mode using only ambient light and in a transmissive mode using a light source. In one embodiment, the display apparatus includes a reflecting polarizer disposed between a light modulating layer and an isotropic light cavity. The light cavity reflects incident light with a first degree of depolarization. The reflecting polarizer reflects light with a second degree of depolarization for at least one polarization that is greater than the first degree of depolarization. In another embodiment of the display apparatus, a microstructured film is included above a light cavity and below a light modulating system where the microstructured film includes sawtooth formations having at least a tilted surface. In another embodiment of a dual-mode display device, the display includes a cholesteric reflecting polarizer disposed between a light modulating layer and a light cavity where the light cavity causes a polarization phase shift upon reflectance.