Abstract:
An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
Abstract:
The invention discloses a planarization method for a wafer having a surface layer with a recess, comprises: forming an etching-resist layer on the surface layer to fill the entire recess; etching the etching-resist layer and the surface layer, till the surface layer outside the recess is flush to or lower than the bottom of the recess, the etching speed of the surface layer being higher than that of the etching-resist layer; removing the etching-resist layer; and etching the surface layer to a predetermined depth. The method can avoid concentric ring recesses on the surface of the wafer resulted from a chemical mechanical polishing (CMP) process in the prior art, and can be used to obtain a wafer surface suitable for optical applications.
Abstract:
An electrooptic device includes a first substrate, a second substrate which is arranged so as to be opposed to the first substrate, a plurality of pixel electrodes which are provided between the first substrate and the second substrate, a dielectric multilayer film which is formed so as to cover the plurality of pixel electrodes and in which a plurality of dielectric layers are laminated, and a sealing member which is arranged around a pixel region on which the plurality of pixel electrodes are provided and bonds the first substrate and the second substrate to each other. In the electrooptic device, at least one dielectric layer of the plurality of dielectric layers is formed so as not to overlap with a sealing region on the first substrate, on which the sealing member is arranged.
Abstract:
A liquid crystal display device which can prevent the generation of bubbles on an adhesive surface between a liquid crystal display panel and a face plate which protects the liquid crystal display panel is provided. In mounting the face plate on an upper polarizer of the liquid crystal display panel by way of an adhesive material, a picture frame is formed on a periphery of the face plate for enhancing design property. Although the picture frame is formed by printing black ink, a quantity of Si present in the black ink is set to not more than 0.7% and not less than 0.01% thus preventing the generation of bubbles attributed to defective adhesion between the face plate and the adhesive material.
Abstract:
A display element that includes substrates each having a thin film layer formed by applying a thin film layer composition thereon by an ink-jet method, in which, in the formation of the thin film layers, streaky display unevenness does not develop along a direction in which an ink-jet head discharges the composition having the shape of dots aligned on straight lines from the nozzles. In the liquid crystal display element 1 including an array substrate 5 including an alignment film 8, and a color filter substrate 3 including an alignment film 7, the substrates 5 and 3 being used in a pair, the dots on the alignment films 7 and 8 are aligned such that an interval between the straight lines on the alignment film 8 is displaced by half an interval from an interval between the straight lines on the alignment film 7.
Abstract:
There are provided: a curable resin composition having a high exposure sensitivity and a good developing property, and thereby capable of forming an accurate and precise pattern; a liquid crystal panel substrate on which a protective film for covering a color layer or spacers for a liquid crystal layer, by using the curable resin composition, hardly causing a color irregularity and contrast irregularity; and a liquid crystal panel using the liquid crystal panel substrate and having a superior display quality. The curable resin composition of the present invention comprises: a copolymer (a) having a molecular structure in which a constitutional unit including an acidic functional unit and a constitutional unit including a photocurable functional group are linked at least; a photopolymerization initiator (h) having a tertiary amine structure; and a photocurable compound (c) having at least one acidic functional group and at least three photocurable functional groups.
Abstract:
A method decreases the time and cost for producing an active matrix substrate of a liquid crystal display device. The method includes steps of forming patterns for scanning lines, separating silicon elements for thin film transistors from a semiconductor layer, forming video signal lines and liquid crystal drive electrodes at the same time, forming spacer bumps or spacers and insulation bumps at the same time via a halftone exposure process thereby creating a taper angle of less than 30 degrees at each edge of the bump, forming contact holes, and forming transparent common electrodes for shielding the video signal line and transparent common electrodes within pixels at the same time. The halftone exposure process utilizes a light transmission adjustable photomask having a translucent area or conducts a two-step exposure process by utilizing a normal photomask.
Abstract:
The present invention provides a liquid crystal display panel, a liquid crystal display device, and a television receiver, each of which permits shortening of production time, simplification of inventory management of the CF substrate, and reduction in production costs. The present invention is a liquid crystal display panel including: a first substrate; a second substrate; and a liquid crystal layer interposed between the first and second substrates, the first substrate including a first insulating substrate, a first wiring, and a flattening layer, the first wiring being formed on a liquid crystal layer side of the first insulating substrate, the flattening layer being arranged between the liquid crystal layer and the first wiring, the second substrate including a second insulating substrate and a column spacer, the column spacer being arranged on a liquid crystal layer side of the second insulating substrate to face a region where the first wiring overlaps with the flattening layer, wherein the first substrate includes a height adjustment layer, the height adjustment layer being arranged to face the column spacer.
Abstract:
A color filter substrate for a liquid crystal display device includes a substrate, a black matrix having a plurality of open portions on the substrate, a color filter layer on the black matrix, and a dielectric layer including first and second layers on the color filter layer, wherein the first layer has a uniform thickness and the second layer has a convex pattern, and the first and second layers include the same material.
Abstract:
A method of producing a semi-transparent type LCD panel provides an LCD panel with reflected light transmitting through a transmissive portion of a passivation layer having the same color density. The semi-transparent type LCD panel mainly comprises a transparent substrate, a first transparent conductive layer, a first alignment layer, a liquid crystal layer, a second alignment layer, a second transparent conductive layer, a color filter layer, a passivation layer, and a TFT array substrate. A reflection layer is formed on a portion of the passivation layer. The area of the passivation layer not covered with the reflection layer is etched to a certain depth. The passivation layer has two different levels of thickness so as to allow reflected transmitting lights to be of the same color density.