Abstract:
A backlight assembly and a liquid crystal display device including the backlight assembly are disclosed. In one embodiment, the backlight assembly includes a light guide plate configured to guide light, emitted from a light source, to a liquid crystal display panel and an optical sheet disposed on an upper surface of the light guide plate and configured to diffuse and collimate the light. The backlight assembly further includes a frame configured to support the liquid crystal display panel and the light guide plate and a shielding tape connected to an upper surface of the frame and extending from the frame to one side of the optical sheet.
Abstract:
The present technology discloses a testing apparatus and a testing method for liquid crystal display (LCD). The apparatus comprises a testing chamber, at least one support device in the testing chamber and an adjusting device. The support device comprises a support stage located at the bottom of the testing chamber and a support rail located on a side wall of the testing chamber. The LCD is supported by the support stage and the support rail. The adjusting device is used to control the support rail to adjust angle of the LCD relative to the support stage.
Abstract:
According to one embodiment, a display device includes a first substrate including a first resin substrate having a first thermal expansion coefficient, and a first barrier layer having a second thermal expansion coefficient which is lower than the first thermal expansion coefficient, a second substrate including a second resin substrate having a third thermal expansion coefficient which is equal to the first thermal expansion coefficient, and a second barrier layer having a fourth thermal expansion coefficient which is lower than the third thermal expansion coefficient and is equal to the first thermal expansion coefficient, and a display element located between the first resin substrate and the second resin substrate.
Abstract:
An object of the present invention is to reduce its tendency to generate local deformation in an extending member of a backlight unit. A backlight unit 12 according to the present invention includes LEDs 17 as light sources, a chassis 14 storing the LEDs 17, a reflection sheet 21 and an LED substrate 18 that are extending members along an inner surface of the chassis 14, a holding member 20 fixed to the chassis 14 and holding the reflection sheet 21 and the LED substrate 18 with the chassis 14 such that the reflection sheet 21 and the LED substrate 18 are sandwiched between the holding member 20 and the chassis 14, and a restricting part 26 restricting positional relationship of the holding member 20 with respect to the reflection sheet 21 and the LED substrate 18 such that a gap C is provided between the holding member 20 and the reflection sheet 21.
Abstract:
Occurrence of an event can be prevented, whereby, when a backlight expands with heat, a light guide plate might move a group of optical sheets into contact with a middle frame and deform the sheets, thereby causing nonuniformity of luminance on a screen. In particular, a protrusion is formed at an edge of the plate, and the sheets are mounted on the plate to avoid the protrusion. The frame covers the protrusion and the edge of the sheets. Even if a spatial gap with respect to the frame is lost by expansion of the plate, the sheets suffer no deformation due to interference between an edge of the sheets and the frame. Therefore, the nonuniformity of luminance on the screen does not occur, either. Also, unusual sounds due to movement of the plate under vibration do not arise since a gap between the protrusion and the frame can be small.
Abstract:
There is provided an optical laminate that significantly suppresses the warping of a liquid crystal panel and can realize high contrast. An optical laminate of the present invention includes: a polarizing film having a thickness of 10 μm or less; and a reflective polarization film. A liquid crystal panel of the present invention includes: a liquid crystal cell; and the optical laminate of the present invention. According to another aspect of the present invention, an optical laminate set is provided. The optical laminate set includes: a first optical laminate that is the optical laminate of the present invention as described above; and a second optical laminate including a polarizing film having a thickness larger than the thickness of the polarizing film of the first optical laminate by 5 μm or more.
Abstract:
A backlight assembly includes a plurality of point light sources, a light guide plate (“LGP”) and a printed circuit board (“PCB”). The LGP has a light incident face in which light is incident, a side surface extending from an edge portion of the light incident face, and a fixing groove which is formed from the side surface toward an inner portion thereof The PCB includes a point light source disposing portion in which the point light sources are disposed along a first direction, an extending portion extending from the point light disposing portion along a second direction substantially perpendicular to the first direction, and a protrusion which is fixed at an end portion of the extending portion. The protrusion of the PCB is coupled with the fixing groove of the LGP.
Abstract:
This invention discloses an edge-lit LED backlight module, a liquid crystal display device and a method for fixing a reflection sheet. This backlight module comprises a backplate, a sidewall connected to the backplate, a light guide plate arranged on the backplate, a light-emitting device arranged on the backplate, and a reflection sheet arranged between the backplate and the light guide plate; wherein the light guide plate has a light-exiting top surface and a light-entering side adjacent to the light-exiting top surface, and the light-emitting device is located between the light-entering side and the sidewall. This backlight module further includes at least a first tension member and a second tension member with their both ends respectively connected to the reflection sheet and the backplate. The backlight module herein can effectively prevent the reflection sheet from warping caused by thermal expansion and further improve the optical quality of the backlight module.
Abstract:
A liquid crystal display apparatus includes a display panel that displays an image, a backlight unit that provides a light to the display panel, and a frame that accommodates the display panel and the backlight unit. The backlight unit includes a light source that emits the light, a diffusion plate that diffuses the light from the light source, an optical sheet that condenses the diffused light and provides the condensed light to the display panel, and a clip that couples the diffusion plate and the optical sheet.
Abstract:
A backlight unit 12 includes a chassis 14, a plurality of cold cathode tubes 18, an optical member 16 and a plurality of support members 20. The chassis 14 has an opening on a light exit side. The cold cathode tubes 18 are light sources arranged in a parallel layout and housed in the chassis 14. The optical member 16 is arranged on the light exit side outer than the cold cathode tubes 18 so as to cover the opening of the chassis 14. The support members 20 are arranged in a parallel layout along a parallel arrangement direction of the cold cathode tubes 18. The support members 20 are formed such that support positions of the optical member 16 are relatively closer to the cold cathode tubes 18 around the center and relatively farther from the cold cathode tubes 18 near the edges. The cold cathode tubes 18 are arranged at relatively smaller intervals around the center and at relatively larger intervals near the edges.