Abstract:
An apparatus and method for determining terminal solid solubility temperature in materials capable of forming hydrides, such as reactor pressure tubes. An inspection device is positioned within the reactor pressure tube under test and a pair of annular seals are radially deployed to seal a section of the pressure tube. Any water within the sealed section is displaced through the injection of gas and the heating of the sealed section to dry the tube and the device. A probe assembly on the device is deployed to contact the interior surface of the pressure tube and measure resistivity changes in the pressure tube wall as a function of temperature. The probe assembly includes a thermocouple probe for measuring temperature and transmit and receive coils for inducing eddy currents within the pressure tube wall. The pressure tube is allowed to cool at a predetermined rate, is reheated at a predetermined rate, and is allowed to cool again. Discontinuities within the temperature coefficient of resistivity indicate terminal solid solubility temperatures of precipitation or dissolution, which may be used to determine the hydrogen concentration of the sealed section of reactor pressure tube.
Abstract:
Techniques and compositions are provided for shielding radioactive energy. The composition includes a hydrocarbon component and a radiation shielding and absorbing material or additive. The composition may be applied to substrates or to radioactive materials. Moreover, the composition may be mixed with raw materials of products.
Abstract:
A transport/storage cask for a radioactive material has an inner shell, an outer shell and a circular gamma ray shielding layer and a circular neutron shielding layer both of which are placed between the inner shell and the outer shell. The gamma ray shielding layer is formed by aligning a plurality of gamma ray shielding blocks composed of lead in a block shape in the circumferential direction. The entire gamma ray shielding block in the axial direction is covered with a copper tube having a higher elasticity limit than the gamma ray shielding block. In the above transport/storage cask, the gamma ray shielding layer composed of lead or a lead alloy is not easily deformed.
Abstract:
The invention relates to a method and device for production of non-contaminated rods from MOX tablets in columns, within a confinement chamber divided into compartments, by means of a centering and aligning element for the tablets and a long pushrod with a sensitive drive.
Abstract:
Core debris generated during a molten reactor core in a reactor containment vessel penetrating the reactor containment vessel is configured to be caught by a core catcher located beneath the reactor containment vessel which has a main body having first stage cooling water channels and second stage surrounded by cooling fins extending radially. The number of the second stage cooling channels is larger than that of the first stage cooling channels. Cooling water is supplied from a cooling water injection opening and distributed to the first cooling water channels at a distributor. An intermediate header is formed between the first and the second cooling water channels, and the cooling water is distributed to the second cooling water channels uniformly.
Abstract:
A system, apparatus and method of processing and/or removing radioactive materials from a body of water that utilizes the buoyancy of the water itself to minimize the load experienced by a crane and/or other lifting equipment. In one aspect, the invention is a method comprising: a) submerging a container having a top, a bottom, and a cavity in a body of water having a surface level, the cavity filling with water; b) positioning radioactive material within the cavity of the submerged container; c) raising the submerged container until the top of the containment apparatus is above the surface level of the body of water while a major portion of the container remains below the surface level of the body of water; and d) removing bulk water from the cavity while the top of the container remains above the surface level of the body of water and a portion of the container remains submerged. The bulk water can be added back into the cavity to add neutron shielding after the container is placed in a staging area and prior to personnel performing the desired operations to the container. As a result, gamma radiation and neutron shielding of the container can be maximized for any crane capacity.
Abstract:
The present invention provides an improved positron radioactive drug radiation shielding device, which achieves savings in space required to store a canister after dismantling the device. Furthermore, a tungsten sleeve is disposed within the canister, and functions in coordination with a syringe. The tungsten sleeve is able to block radioactive radiation released by radioactive drugs contained in the syringe. Moreover, a front cover and a rear cover joined to two sides of the canister enable a hermetically-sealed space to be formed within the canister, which increases the effectiveness of blocking the amount of radiation from the canister, thereby reducing danger to the human body from the radiation.
Abstract:
A method of operating a vaporization system including a first cylinder, a second cylinder, and an eductor having a suction inlet, a motive inlet, and an outlet is provided. The method includes vaporizing uranium hexaflouride in the first cylinder, channeling the vaporized uranium hexaflouride in the first cylinder to the suction inlet of the eductor, monitoring the pressure of the vaporized uranium hexaflouride channeled to the suction inlet, and channeling the vaporized uranium hexaflouride through the outlet. The method also includes vaporizing uranium hexaflouride in the second cylinder, and channeling the vaporized uranium hexaflouride in the second cylinder to the motive inlet of the eductor when the flow of uranium hexaflouride channeled to the suction inlet is below a predetermined amount.
Abstract:
An emergency core cooling system is provided with a hybrid safety system composed of an active safety system and a static safety system for ensuring the safety against a severe natural phenomenon such as a giant earthquake and a mega hurricane. An emergency core cooling system for a boiling water reactor includes four safety divisions in total: three safety divisions for an active safety system having a high pressure reactor core cooling system, a low pressure reactor core cooling system, a residual heat removal system, and an emergency diesel generator; and one safety division for a static safety system having an isolation condenser, a gravity drop reactor core cooling system, and a static containment vessel cooling system.
Abstract:
In various embodiments, a spacer grid for a nuclear reactor fuel bundle is provided. The grid includes a plurality of interstitial dividers that form an array of cells. Each cell is structured to retain a respective one of a plurality of fuel rods to thereby form an array of equally spaced fuel rods. The grid additionally includes a perimeter band that peripherally surrounds the dividers and is connected to opposing ends of each divider. The perimeter band includes a plurality of spring tabs formed along and extending from an edge of the perimeter band. The spring tabs extend from the edge at an angle away from the dividers such that a distal end of each spring tab will contact an interior surface of a respective one of a plurality of walls of a channel in which the arrayed fuel rods can be inserted to form the fuel bundle.