Abstract:
A wireless device has a BRP-CRP interface that includes a dual-port frame memory having a first access port and a second access port in which data can be written to the dual-port frame memory through the first access port at the same time that data is read from the dual-port frame memory through the second access port. A bit rate processor performs bit rate processing on input data and writes data resulting from the bit rate processing to the dual-port frame memory through the first access port. A chip rate processor reads data from the dual-port frame memory through the second access port and performs chip rate processing on the data read from the dual-port frame memory. A data processor executes a software application that writes data to the dual-port frame memory through the first access port and reads data from the dual-port frame memory through the second access port.
Abstract:
A CDMA radio receiving apparatus which receives a slot which has a long code group identification short code at a point where a long code is masked. The apparatus includes a detector that detects a phase of the long code in association with a pattern that appears over successive slots and comprises the long code group identification short code. The apparatus also includes a correlator that performs correlation processing in association with the phase detected by the detector to identify the long code.
Abstract:
Multipath components of transmitted data symbols are received with individual delays and processed by a RAKE having a number of fingers. A delay profile indicating magnitudes for a first number of delay values is provided. Estimated magnitudes for a second number of delay values located between the first number of delay values are calculated by interpolation, and a combined delay profile is provided by combining the magnitudes for the first and second number of delay values. Delay values for peaks in the combined delay profile are determined, and a number of peak delay values (P1, P2, P) comprising the largest peak are selected from the combined delay profile. At least some of the selected peak delay values are provided to the RAKE and assigned to the fingers. This allows a reduction of current consumption and dye area, while still providing delay values with sufficient resolution for the RAKE.
Abstract:
There are provided a turbo decoding system of a CDMA mobile communication terminal, a transmission power control method, and a CDMA mobile communication terminal in which interference in the other users is suppressed by not increasing the transmission power of a base station to a value over the necessary value and excessive repetitive processing is prevented in the turbo decoding section to reduce consumption power.There are disposed a BLER measuring section 10 to measure BLER as reception quality for each number of decoding bits on the basis of a CRC judge result after an error correction by the turbo decoding section 4 and an outer loop power control and iteration control section 11 to control transmission power of a base station and to control the iteration count of turbo decoding on the basis of the reception quality of each number of decoding bits. The outer loop power control and iteration control section 11 controls the transmission power of the base station by producing a target SIR according to the reception signal such that SIR of the reception signal is the target SIR and adaptively controls to make the iteration count optimal on the basis of the convergence state of the outer loop transmission power control.
Abstract:
K data signals, or bursts, are transmitted over a shared spectrum in a code division multiple access communication format. A combined signal is received and sampled over the shared spectrum, as a plurality of received vector versions. The combined signal includes the K transmitted data signals. A plurality of system matrices and an associated covariance matrix using codes and estimated impulse responses of the K data signals is produced. Each system matrix corresponds to a received vector version. The system and covariance matrices are extended and approximated as block circulant matrices. A diagonal matrix of each of the; extended and approximated system and covariance matrices are determined by prime factor algorithm—fast Fourier transform (PFA-FFT) without division of the matrix. The received vector versions are extended. A product of the diagonal matrices and the extended received vector versions is taken. An inverse block discrete Fourier transform is performed by a PFA-FFT on a result of the product to produce the estimated data of the K data signals.
Abstract:
The disclosure relates to a method of synchronising a device for receiving scrambled data, using at least one periodic scrambling sequence which is divided into K time intervals, each interval comprising N bit periods known as symbols. In particular, one such method includes calculating a synchronisation value of at least one polynomial that generates the aforementioned scrambling sequence within a pre-determined synchronisation time interval and synchronisation bit period. During the calculation step, the sequence is progressed through at increments of at least one time interval and at least one bit period, using a matrix calculation of the synchronisation value.
Abstract:
A satellite signal adjustable time-division multiplexing receiver for GNSS and a method for acquiring and tracking satellite signal used in the receiver. The present invention executes correlation in an adjustable time-division multiplexing and uses a clock signal with a clock rate to control speed of correlation. The clock rate can be fixed or variable. In the case that the clock rate is variable, when the speed is required to be fast (e.g. in satellite acquisition mode), the clock rate is set to be high clock rate; when the speed needs not be so fast (e.g. in signal tracking mode), the clock rate can be lower down to reduce power consumption. The adjustable time-division multiplexing is arranged for respective domains such as visible satellite, code phase, Doppler frequency and tracking accuracy according to the clock rate.
Abstract:
A transmitter site transmits a plurality of different data signals at a chip rate over a shared spectrum in a code division multiple access communication system. Each transmitted data signal experiences a similar channel response. A combined signal of the transmitted data signals is received. The combined signal is sampled at a multiple of the chip rate. The channel response for the combined signal is determined. A spread data vector is determined using the combined signal samples and the estimated channel response. The data of the different data signals is determined using the spread data vector.
Abstract:
A correlation detection apparatus which realizes software CDMA inverse-spread processing. A reception circuit receives an RACH preamble from a mobile station, and an A/D converts the preamble into digital received data. An FFT unit FFT-processes the received data to obtain an FFT result. An RACH code storage unit holds an RACH preamble code, and another FFT unit FFT-processes the RACH preamble code to obtain another FFT result. A multiplication unit multiples the FFT result by the other FFT result. An IFFT unit IFFT-processes a result of multiplication input from the multiplication unit to obtain a delay profile. A data decoding unit decodes the received data by using the delay profile, and obtains decoded data.
Abstract:
In one embodiment, a receiver including one or more signal-processing blocks and a hardware-based matrix co-processor. The one or more signal-processing blocks are adapted to generate a processed signal from a received signal. The hardware-based matrix co-processor includes two or more different matrix-computation engines, each adapted to perform a different matrix computation, and one or more shared hardware-computation units, each adapted to perform a mathematical operation. At least one signal-processing block is adapted to offload matrix-based signal processing to the hardware-based matrix co-processor. Each of the two or more different matrix-computation engines is adapted to offload the same type of mathematical processing to at least one of the one or more shared hardware-computation units.