Abstract:
It is disclosed to determine, as a representation of a set of terminal positions, a polygon that encloses all terminal positions of the set of terminal positions. The terminal positions are positions of one or more terminals within a coverage area of a communication node.
Abstract:
High precision radio frequency direction finding systems are described that can determine an angle-of-arrival and geo-location of a RF emitter with respect to a mobile platform. A radio frequency direction finding (RFDF) system for determining a position of a RF emitter with respect to a mobile platform can include an angle-of-azimuth (AoA) system configured to determine an azimuth of a RF emitter with respect to the mobile platform; an attitude measurement system configured to measure the attitude of the mobile platform; a geo-location system configured to calculate the geo-location of the RF emitter; and a processor system configured to calculate a position of the RF emitter.
Abstract:
A method is provided for demodulating a signal carrying a message transmitted by a terrestrial beacon, executed by a system comprising a constellation of satellites suitable for detecting said signal and for repeating it towards receiving stations on the ground, and an analysis module suitable for receiving signals from said stations. Each receiving station transmits the signals that it receives from the satellite to the analysis module, said module realigning said signals in frequency and/or in time relative to one another, combining the realigned signals to generate a synthetic signal having an enhanced signal-to-noise ratio, and determining the content of said message and/or the modulation parameters of said synthetic signal. The method applies notably to the accurate and reliable location of distress beacons by a satellite system.
Abstract:
A method and apparatus for generating a bar code and for using a bar code to assist with positioning are provided. The method for generating a bar code to assist with positioning includes obtaining Global Positioning System (GPS) assistance data, generating a bar code with the GPS assistance data encoded therein, and displaying the bar code. The method for using a bar code to assist with positioning includes scanning a bar code, obtaining GPS assistance data from the scanned bar code, receiving and locking onto one or more GPS signals by using the GPS assistance data, and determining a position using the received one or more GPS signals.
Abstract:
A device and method for providing location estimations. The device may be configured to estimate its location be transmitting and/or receiving signals of respective transmission ranges. The device may also be configured to transition from a client device operational mode to a location beacon operational mode once an accurate location estimation has been obtained.
Abstract:
The present invention provides systems and methods for self-labeling access points with their geographic location from received beacon frames. In particular, the present invention transmits beacon frames including temporary location information from mobile devices. The beacon frames are received by an access point, filtered by the access point and then used to determine a location. Once the location has been determined, the access point uses the determined location to self-label itself by converting the location information to a geographic code and inserting it as part of the SSID of the access point's beacon signal. The present invention also includes a number of methods using geographic codes including a method for generating and transmitting geographic codes for mobile devices, a method for determining a location of an access point, a method for self-labeling an access point, and a method for filtering beacon frames.
Abstract:
In a technique for communication with a station on a wireless network, the technique includes forming a plurality of narrow-band beams, each having a different angular direction from an antenna of a base station and collectively distributed over a beamspace to form a pseudo-omni-directional beam pattern. That beamspace may span an entire spherical region or a portion thereof, for example, when the narrow-band beams are broadcast over a sector of an entire spherical region. The technique may assign each of the plurality of narrow-band beams to a different frequency band (such as a different channel band or sub-channel) on the wireless network. The technique may simultaneously broadcast the plurality of narrow-band beams in a time-varying manner such that the angular direction of each of the plurality of narrow-band beams varies with time, where that variation may be random or ordered.
Abstract:
Mobile platforms exchange their positions in a three-dimensional common reference frame based on data from their respective inertial sensors. The mobile platforms establish the common reference frame, e.g., by contacting each other. The position of each mobile platform is updated in its local reference frame and the position is transformed into a position in the common reference frame. The position in the common reference frame may then be transmitted to the other mobile platform, which can then determine the spatial relationship between the mobile platforms based on the received common reference frame position. Either mobile platform may pass the common reference frame to additional mobile platforms by establishing a new reference frame with a new mobile platform, generating a transformation from the new reference frame to the common reference frame and providing the transformation to the new mobile platform.
Abstract:
A positioning system designed to provide a three dimensional location of an object. The system can include one or more multiple transmitters or electromagnetic beacons, software defined radio receivers with an associated processing unit and data acquisition system, and magnetic antennas. The system applies theoretical calculations, scale model testing, signal processing, and sensor data to operate.
Abstract:
Methods and systems for dynamic tracking utilizing leaky wave antennas (LWAs) are disclosed and may include configuring a transmitting angle of a plurality of leaky wave antennas in a wireless device at a desired starting angle. A RF signal strength may be measured at the sweeping transmitting angles for each of the leaky wave antennas, and a location of one or more objects may be tracked from the measured RF signal strength and a corresponding angle of reception of the LWAs. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The LWAs may be situated along a plurality of axes in the wireless device. The LWAs may comprise microstrip or coplanar waveguides, where a cavity height of the LWAs is dependent on spacing between conductive lines in the waveguides. The LWAs may be integrated in integrated circuits, integrated circuit packages, and/or printed circuit boards.