Abstract:
In a low-pressure mercury vapour discharge lamp a tin oxide coating having a resistance per square of more than 10,000 Ohm is provided on the wall so as to avoid blackening of the glass. Particularly this coating is used in the aperture of a lamp for photo-copying purposes.
Abstract:
The claimed invention relates to a luminescent decorative material, which is visible even at night, of which different decorative properties are obtained in the daytime or under lighting due to the presence or absence of luminescence. The claimed invention provide a luminescent sheet (plane sheet) having see-through property and containing a transparent part, through which it is possible to see the area behind the plane sheet, and a luminescent part.
Abstract:
Provided herein are exemplary embodiments for phosphor screen including a substrate, a stimulable phosphor layer disposed over the substrate, the stimulable phosphor layer including a stimulable phosphor material, and an adhesive layer disposed by solvent coating over the stimulable phosphor layer, the adhesive layer including solvent-coatable thermally-sensitive elastomers, where the adhesive layer has a dust adhesion of ≦1 dust particles/sq.in.
Abstract:
A solid state lighting luminaire, which comprises a solid state light source, an encapsulated structure, and a first phosphor, is provided. The encapsulated structure encapsulates the solid state light source and has an outside illuminating surface. The first phosphor is patterned to cover a portion of the outside illuminating surface for down-converting the illumination from the solid state light source.
Abstract:
The invention relates to an OLED device (1) comprising a light emitting layer stack (3) on top of a substrate (2) encapsulated by an encapsulating cover (4), where at least the edges of the substrate (2) and the encapsulating cover (4) are covered with a protection cover (5) made of a moldable material and to an OLED system (10) comprising at least one OLED device (1) and at least one electronic board (81, 82) connected to the at least one OLED device (1) by suitable connectors (85), preferably further comprising a cooling body (9) thermally connected to the OLED device (1). The invention further relates to a method to manufacture an OLED device (1) or an OLED system (10) comprising the step of applying a protection cover (5) to the OLED device (1) or the OLED system (10) by a plastic molding technique to at least partly cover the OLED device (1) or the OLED system (10).
Abstract:
An OLED display includes a pixel substrate including a pixel area at which an organic light emitting member is located, and a peripheral area surrounding the pixel area, a pixel protective layer located in the pixel area, a peripheral protective layer separated from the pixel protective layer and located in the peripheral area, a sealing substrate opposite to the pixel substrate, a moisture absorbent between the pixel substrate and the sealing substrate, and on and overlapping the peripheral protective layer, and a sealing member between the pixel substrate and the sealing substrate, and located at an outer side of the moisture absorbent.
Abstract:
The invention relates to an OLED device (1) comprising a light emitting layer stack (3) on top of a substrate (2) encapsulated by an encapsulating cover (4), where at least the edges of the substrate (2) and the encapsulating cover (4) are covered with a protection cover (5) made of a moldable material and to an OLED system (10) comprising at least one OLED device (1) and at least one electronic board (81, 82) connected to the at least one OLED device (1) by suitable connectors (85), preferably further comprising a cooling body (9) thermally connected to the OLED device (1). The invention further relates to a method to manufacture an OLED device (1) or an OLED system (10) comprising the step of applying a protection cover (5) to the OLED device (1) or the OLED system (10) by a plastic molding technique to at least partly cover the OLED device (1) or the OLED system (10).
Abstract:
In order to improve durability, a display apparatus includes a substrate; an encapsulation substrate facing the substrate; a display unit disposed between the substrate and the encapsulation substrate; a sealing unit disposed between the substrate and the encapsulation substrate so as to bond the substrate and the encapsulation substrate and spaced from the display unit; and a protective member formed over at least one surface among surfaces of the substrate and the encapsulation substrate, except surfaces facing the display unit. The protective member includes a base, a plurality of capsules comprising monomers, and a catalyst inducing polymerization of the monomers.
Abstract:
In an organic light-emitting display apparatus and a method of manufacturing the same, the organic light-emitting display apparatus comprises: a substrate; a light-emitting unit formed on the substrate; and an encapsulation film, which covers the light-emitting unit on the substrate, and which includes a plurality of organic layers and a plurality of inorganic layers which are alternately stacked.
Abstract:
A protective layer of a plasma display panel includes a base layer formed on a dielectric layer, and a plurality of aggregated particles dispersed on an entire surface of the base layer. Phosphor layers include a green phosphor layer containing an Mn2+ activated short persistent green phosphor whose 1/10 afterglow time exceeds 2 msec and stays below 5 msec, and a Ce3+ activated green phosphor or an Eu2+ activated green phosphor having a luminescence peak in a wavelength region of at least 490 nm to less than 560 nm.