LASER-BASED MATERIAL PROCESSING METHODS AND SYSTEMS
    51.
    发明申请
    LASER-BASED MATERIAL PROCESSING METHODS AND SYSTEMS 失效
    基于激光的材料加工方法与系统

    公开(公告)号:US20120196454A1

    公开(公告)日:2012-08-02

    申请号:US13421372

    申请日:2012-03-15

    Abstract: Various embodiments may be used for laser-based modification of target material of a workpiece while advantageously achieving improvements in processing throughput and/or quality. Embodiments of a method of processing may include focusing and directing laser pulses to a region of the workpiece at a pulse repetition rate sufficiently high so that material is efficiently removed from the region and a quantity of unwanted material within the region, proximate to the region, or both is reduced relative to a quantity obtainable at a lower repetition rate. Embodiments of an ultrashort pulse laser system may include a fiber amplifier or fiber laser. Various embodiments are suitable for at least one of dicing, cutting, scribing, and forming features on or within a semiconductor substrate. Workpiece materials may include metals, inorganic or organic dielectrics, or any material to be micromachined with femtosecond, picosecond, and/or nanosecond pulses.

    Abstract translation: 各种实施例可以用于对工件的目标材料进行基于激光的修改,同时有利地实现处理生产量和/或质量的改善。 处理方法的实施例可以包括将激光脉冲聚焦并以足够高的脉冲重复频率将激光脉冲引导到工件的区域,使得材料有效地从该区域移除并且在该区域内靠近该区域的一些不想要的材料, 或者两者相对于以较低的重复率可获得的量减少。 超短脉冲激光系统的实施例可以包括光纤放大器或光纤激光器。 各种实施例适合于在半导体衬底上或半导体衬底内的切割,切割,划线和形成特征中的至少一个。 工件材料可以包括金属,无机或有机电介质,或任何要用飞秒,皮秒和/或纳秒脉冲微加工的材料。

    GLASS LARGE-CORE OPTICAL FIBERS
    52.
    发明申请
    GLASS LARGE-CORE OPTICAL FIBERS 有权
    玻璃大芯光纤光纤

    公开(公告)号:US20120188632A1

    公开(公告)日:2012-07-26

    申请号:US13440215

    申请日:2012-04-05

    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1−n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10−3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.

    Abstract translation: 光纤的实施例可以包括包括材料(例如氟掺杂石英玻璃)的包层特征,其可以产生相对于其中设置包层特征的包层材料的非常低的相对折射率差。 该相对折射率差可以由(n1-n2)/ n1表征,其中n1是其中包含包层特征的包层材料的折射率,n2是包层特征的折射率。 在某些实施方案中,相对折射率差可以小于约4.5×10 -3。 在各种实施例中,可以选择包括例如包层特征的尺寸和间隔的包层特征的配置,以提供用于第二模式和更高模式的基模模式的限制,而这可以提供模式滤波 ,单模传播和/或低弯曲损耗。

    COMPOSITE NANOPARTICLES AND METHODS FOR MAKING THE SAME
    53.
    发明申请
    COMPOSITE NANOPARTICLES AND METHODS FOR MAKING THE SAME 有权
    复合纳米粒子及其制备方法

    公开(公告)号:US20120168669A1

    公开(公告)日:2012-07-05

    申请号:US12983534

    申请日:2011-01-03

    Abstract: A composite nanoparticle, for example a nanoparticle containing one or a plurality of cores embedded in another material. A composite nanoparticle can be formed by a one step process that includes: ejecting material from a bulk target material using physical energy source, with the bulk target material disposed in a liquid. Composite nanoparticles are formed by cooling at least a portion of the ejected material in the liquid. The composite fine particles may then be collected from the liquid. A product that includes composite fine particles may be formed with laser ablation, and ultrashort laser ablation may be utilized so as to preserve composite nanoparticle stoichiometry. For applications of the composite fine particles, optical properties and/or magnetic properties may be exploited for various applications.

    Abstract translation: 复合纳米颗粒,例如含有嵌入另一材料中的一个或多个芯的纳米颗粒。 复合纳米颗粒可以通过一步法形成,该方法包括:使用物理能源从大量目标材料中喷射材料,其中大量目标材料设置在液体中。 复合纳米颗粒通过冷却至少一部分喷射的液体中的材料形成。 然后可以从液体中收集复合细颗粒。 可以通过激光烧蚀形成包括复合细颗粒的产品,并且可以利用超短激光烧蚀以保持复合纳米颗粒的化学计量。 对于复合细颗粒的应用,可以利用光学性质和/或磁性来进行各种应用。

    METHOD OF PRODUCING COMPOUND NANORODS AND THIN FILMS
    54.
    发明申请
    METHOD OF PRODUCING COMPOUND NANORODS AND THIN FILMS 审中-公开
    生产化合物和薄膜的方法

    公开(公告)号:US20120148756A1

    公开(公告)日:2012-06-14

    申请号:US12823584

    申请日:2010-06-25

    Abstract: A method of producing compound nanorods and thin films under a controlled growth mode is described. The method involves ablating compound targets using an ultrafast pulsed laser and depositing the ablated materials onto a substrate. When producing compound nanorods, external catalysts such as pre-deposited metal nanoparticles are not involved. Instead, at the beginning of deposition, simply by varying the fluence at the focal spot on the target, a self-formed seed layer can be introduced for nanorods growth. This provides a simple method of producing high purity nanorods and controlling the growth mode. Three growth modes are covered by the present invention, including nanorod growth, thin film growth, and nano-porous film growth.

    Abstract translation: 描述了在受控生长模式下制备复合纳米棒和薄膜的方法。 该方法包括使用超快速脉冲激光烧蚀化合物靶,并将消融材料沉积在基底上。 当制备复合纳米棒时,不涉及外部催化剂如预沉积的金属纳米颗粒。 相反,在沉积开始时,简单地通过改变目标上焦点处的注量,可以引入自形晶种层用于纳米棒生长。 这提供了生产高纯度纳米棒并控制生长模式的简单方法。 本发明涵盖三种生长方式,包括纳米棒生长,薄膜生长和纳米多孔膜生长。

    Beam stabilized fiber laser
    57.
    发明授权
    Beam stabilized fiber laser 有权
    光束稳定光纤激光器

    公开(公告)号:US08073036B2

    公开(公告)日:2011-12-06

    申请号:US12966603

    申请日:2010-12-13

    Abstract: A laser head generating ultrashort pulses is integrated with an active beam steering device in the head. Direct linkage with an application system by means of an adequate interface protocol enables the active device to be controlled directly by the application system.

    Abstract translation: 产生超短脉冲的激光头与头部中的主动光束转向装置集成。 通过适当的接口协议与应用系统的直接链接使得主动设备能够被应用系统直接控制。

    Beam scanning imaging method and apparatus
    59.
    发明授权
    Beam scanning imaging method and apparatus 有权
    光束扫描成像方法和装置

    公开(公告)号:US07897924B2

    公开(公告)日:2011-03-01

    申请号:US12055063

    申请日:2008-03-25

    CPC classification number: G01B15/04 G01B11/24 G01N21/3581 G01N22/00

    Abstract: An imaging apparatus uses focusing and collecting optics in combination with steering optics for efficient imaging of a target using an extended terahertz electro-magnetic range challenged by weak sources and low sensitivity of detection. By proper location of optics to utilize angular conversion of the beam to a lateral scan, a rastering imaging apparatus is demonstrated without moving target or entire imaging system. In at least one embodiment a mirror-lens set is used to steer the terahertz (THz) beam along and (or) to collect the THz beam from each point of the target. The target is imaged with a much higher speed than when moving the target or the entire imaging system. A THz wave image can be taken at video frequency for practical usage of the apparatus in diverse application areas, where it has not been considered to be feasible.

    Abstract translation: 成像装置使用聚焦和收集光学元件与转向光学元件组合,用于使用由弱光源挑战的扩展的太赫兹电磁范围和低灵敏度的目标进行有效成像。 通过将光束的角度转换用于横向扫描的光学器件的适当位置,在没有移动目标或整个成像系统的情况下证明了成像设备。 在至少一个实施例中,使用镜面透镜组来转向太赫兹(THz)光束并且(或)以从目标的每个点收集THz光束。 目标以比移动目标或整个成像系统时高得多的速度成像。 可以在视频下拍摄太赫兹波图像,以便在不被认为是可行的各种应用领域中实际使用该设备。

Patent Agency Ranking