Abstract:
A power supply system has a housing and a front panel. The housing has multiple power supply slots disposed on a rear of the housing for mounting multiple power supplies respectively. The front panel has multiple peak portions and multiple valley portions arranged alternately to form a multi-dimensional space. Each peak portion has a first inclined wall for mounting multiple terminal holders, and has a second inclined wall for forming a heat dissipating structure. Electric power is input into the server power supply system via the terminal holder and is transformed and transmitted to the power supplies. With the terminal holders and the heat dissipating structures disposed on the peak portions of the front panel, space of the front of the housing can be utilize efficiently and heat dissipating efficiency to the server power supply system is also improved.
Abstract:
An AC backup power system controls a power supply to selectively connect to a primary AC power source or a backup AC power source through a switching module. The switching module is controlled by a monitoring module. The monitoring module has a power monitoring unit, a first circuit switch, a second circuit switch, and a first processor. When the power monitoring unit detects an interruption of primary AC current, the first circuit switch that is normally closed is immediately turned off. The first processor then drives the switching module to connect to the backup AC power source. Once the backup AC power source reaches the zero-crossing point, the second circuit switch is turned on so that the backup AC power source provides power to the power supply. The power supply receives power at the zero-crossing point to avoid problems of sparks and coke deposition.
Abstract:
The present invention relates to a power supply with output protection and a control method of the power supply. The invention mainly provides a pre-protection value lower than a default over-current protection value. When a present output current of the power supply is higher than or equal to the pre-protection value and is lower than the over-current protection value, the method firstly determines whether the power supply has abnormal conditions. When the power supply has abnormal conditions, the method can automatically provide or stop providing a working voltage to a load. When the present output current is further higher than or equal to the over-current protection value, the method takes an over-current protection action. By multi-level monitoring of the current values, the invention properly provides an over-current protection.
Abstract:
A transformer has two magnetic cores, at least one primary winding unit mounted in the magnetic cores, at least one secondary winding unit mounted in the magnetic cores and two rectifying circuit boards externally mounted beside the magnetic cores. An AC voltage output from the secondary winding unit is transmitted to and rectified by the rectifying circuit board. Therefore, the size of the transformer is compact, and heat energy generated by electronic elements mounted on the rectifying circuit board is effectively dissipated to maintain normal operation of the transformer. Further, since the transmission path from the secondary winding unit to the rectifying circuit board is short, energy loss is reasonably reduced when the transformer is operated under a high frequency situation or a larger current mode.