Abstract:
A system, method, and corresponding computer data product, generates a high resolution reference image, generates a set of rotated reference images from the high resolution reference image, cross-correlates the set of rotated reference images with the high resolution reference image to generate a set of cross-correlation values, and determines that the high resolution reference image is suitable for use in a normalized gray scale pattern find process when the difference between any two correlation values generated by the image cross correlation module is greater than a predetermined threshold value.
Abstract:
Apparatus and associated methods relate to a stackable distributed communication and control hub (DCCH) configured to provide a wide viewing angle for instantly inspecting multiple connections when multiple DCCHs are stacked. In an illustrative example, a DCCH may include multiple connection ports distributed on one or more edge surfaces. An offset bracket, for example, may couple two DCCHs, each at a coupling surface of the corresponding DCCH. Upon coupling, the DCCHs are held at substantially parallel planes. For example, a first DCCH is offset from a second DCCH in two directions. In a first direction, respective planes are offset along a vertical axis by a predetermined first offset. In a second direction, the DCCHs are offset by a predetermined second offset, orthogonal to the first direction. Various embodiments may advantageously allow visual status of the connection ports visible in at least one viewing angle along the vertical axis.
Abstract:
Apparatus and associated methods relate to a field selectable gain mode system. In an illustrative example, an APD-based sensor may, for example, have two or more predetermined gain modes. The gain modes may, for example, be activated in response to a selection signal(s) generated by a user. For example, the APD-based sensor may apply the user-selected gain mode by independently controlling a circuit gain, an emitter gain, and an APD gain. When the user selection signal is selected, for example, a controller may apply corresponding independent gain parameters to the circuit gain, the emitter gain, and the APD gain, such that a collective high dynamic range sensor system is provided. For example, the independent gain parameters may include a range of control voltages, a range of control current, and/or a range of gain input. Various embodiments may advantageously achieve increased accuracy across an extended operating range of gain values.
Abstract:
Apparatus and associated methods relate to an array of individually readable distance sensors disposed along a first axis on a platform and configurable to detect penetration of a first plane containing the first axis, and an array of individually controllable light emitting indicators disposed on the platform along at least a second axis and configurable to emit visual indicia to a user out of the first plane. The visual indicia may, for example, be associated with the detected penetration. A reconfigurable predetermined detection window may, for example, be generated by associating adjacent sensors detecting input during a teaching operation. The detection window may, for example, be further generated by determining at least one distance threshold profile as a function of input received from the adjacent sensors during the teaching operation. Various embodiments may advantageously enable efficient configuration of generic sensing and indication units.
Abstract:
Apparatus and associated methods relate to a dynamically reconfigurable distributed communication and control hub (DCCH) configured to identify and configure its multiple connection ports independently and automatically. In an illustrative example, the DCCH may include a controller circuit and multiple independent reconfigurable connection ports (IRCPs). For example, the DCCH may be connected to multiple edge devices and controllers at the IRCPs. The edge devices and controllers may use different communication protocols. Upon receiving a signal at a IRCP, for example, the control circuit may retrieve a first predetermined set of rules to determine whether the IRCP is to be operated as a master port, a slave port, or a pass-through port. Based on a second set of rules, for example, the control circuit may determine a communication protocol of the IRCP. Various embodiments may advantageously avoid human intervention in setting up each of the multiple IRCPs of the DCCH.
Abstract:
Apparatus and associated methods relate to pairing a receiver with an emitter based on a presence of an amplitude of a spectral profile at at least one predetermined frequency. In an illustrative example, a receiver may receive, from the emitter, an emitted optical signal modulated by the at least one predetermined frequency. A receiver may, for example, generate a digital signal corresponding to the optical signal received. A controller may, for example, generate the spectral profile from the digital signal. The controller may, for example, apply a predetermined threshold to the spectral profile. The controller may, for example, generate an output signal based on the presence of the amplitude of the spectral profile above the first predetermined threshold at the at least one predetermined frequency. Various embodiments may advantageously discriminate a corresponding emitter to establish an optical source-to-detector-link, for example, in the presence of other emitters and/or optically noisy environments.
Abstract:
Apparatus and associated methods relate to a method of non-contact motion detection. A one-dimensional optical sensor detects motion of a target or objects on a conveyor belt through a continuous measurement of targets or objects and a real-time comparison of the pixel images captured by the one-dimensional optical sensor. In an illustrative embodiment, a one-dimensional sensor may be configured to determine motion of objects based on changes to the captured intensities of pixel images over time. The sensor may continually capture photoelectric pixel images and compare a current pixel image with a previous pixel image to determine a frame differential image value. The frame differential image value is evaluated against a predetermined threshold over a predetermined time period. Based on the evaluation, a signal is output indicating whether the objects on the conveyor belt are moving or jammed.
Abstract:
Apparatus and associated methods relate to a volumetric measurement system using three dimensional (3D) ToF cameras. In an illustrative example, a VMS may include at least one 3D distance sensor unit for monitoring a volume of objects in a region of interest (ROI). The VMS may, for example, include a set of user-defined parameters including the ROI, and temporal distribution of measurement attributes associated with the ROI. In some implementations, the VMS may be activated to automatically generate a set of error compensated volumetrics. For example, the VMS may apply a 3D profile, generated based on signals received from the 3D distance sensor, to an error compensation model. Based on measurement attributes generated from applying the error compensation model, the VMS may, for example, generate a set of error compensated volumetrics. Various embodiments may advantageously compensate for errors including occlusion of objects from the 3D distance sensor.
Abstract:
Apparatus and associated methods relate to generating a wiring schema with more than one safety device sharing at least one test signal through one or more external terminal blocks when the number of terminals required by safety devices exceeds the number of available terminals of a safety controller. In an illustrative example, the method may include determining a total number of terminals A of safety devices to be connected to a safety evaluation device having a number of terminals B. If A is greater than B, the method may then include generating a wiring schema that one or more external terminal blocks may show indicia of electrical connections between an identified set of safety devices and a shared terminal of the safety evaluation device associated with that set. Various embodiments may advantageously expand a number of devices to be connected to the safety evaluation device.
Abstract:
Apparatus and associated methods relate to enabling a radar system to use different sensing mechanisms to estimate a distance from a target based on different detection zones (e.g., far-field and near-field). In an illustrative example, a curve fitting method may be applied for near-field sensing, and a Fourier transform may be used for far-field sensing. A predetermined set of rules may be applied to select when to use the near-field sensing mechanism and when to use the far-field mechanism. The frequency of a target signal within a beat signal that has less than two sinusoidal cycles may be estimated with improved accuracy. Accordingly, the distance of a target that is within a predetermined distance range (e.g., two meters range for 24 GHz ISM band limitation) may be reliably estimated.