Abstract:
A multi-path receiving system is provided. The multi-path receiving system includes a multi-path analyzer, a channel estimator and an equalizer. The multi-path analyzer analyzes a channel impulse response (CIR) of the multi-path channel from the received stream. The channel estimator calculates a channel estimation result from the received stream. The channel estimator comprises a frequency domain interpolation filter performing channel estimation. The frequency domain interpolation filter consumes an amount of power according to the CIR result output from the multi-path analyzer. The equalizer equalizes the received stream based on the channel estimation result.
Abstract:
A reset signal filter includes a power voltage detector and a reset signal detector or includes only one reset signal detector. The power voltage detector includes a comparators and a basic logic gates (e.g. AND gate, OR gate, inverter, etc). The reset signal detector includes a comparator, N flip flops connected in series, an AND gate, an OR gate, a multiplexer and an output flip flop. The reset signal filter receives a first reset signal generated by a power voltage detector or a Schmitt trigger buffer and utilizes N flip flops to register the signal level of the first reset signal for N clock periods. Then the reset signal filter determines if the first rest signal is changed during N clock periods, and outputs a second reset signal.
Abstract:
A method for dynamically adjusting the power consumption of a multi-carrier receiver and a multi-carrier receiver with dynamically power adjustment. The method includes receiving a multi-carrier signal, wherein the multi-carrier signal comprises a plurality of sub-carriers. Channel characteristics of each sub-carrier are estimated according to the demodulated multi-carrier signal. ICI strength is estimated from the demodulated multi-carrier signal. A system performance is detected. The estimated ICI is subtracted when the ICI strength exceeds an ICI threshold and the system performance is less than a system performance threshold. The demodulated multi-carrier signal is then equalized is based on the estimated channel characteristics, and the system performance is updated according to the equalized multi-carrier signal.
Abstract:
A display panel is disclosed. The display units with the same position at odd rows and even rows are electrically coupled to different data lines, such that most of the time each of the data lines on the display panel is maintained on a single polarity, respectively. Accordingly, the swing voltage of the data lines on the display panel is reduced when scanning an image, such that the power consumption of the display panel is further reduced in order to achieve the object of saving power.
Abstract:
A data trigger reset device for an electronic device is provided in order to avoid system errors due to out-of-sequence reset on electronic devices of an electronic system. The data trigger reset device includes a voltage converter and a voltage comparator. The voltage converter receives an input signal and then converts the input signal to generate a data voltage signal. The voltage comparator is coupled to the voltage converter and is used for comparing the data voltage signal with a reference voltage to generate a reset signal for resetting the electronic device.
Abstract:
In order to mitigate electromagnetic interference (EMI), the present invention provides a circuit device for an electronic device including a signal generating unit, a phase adjusting unit and an output interface. The signal generating unit generates a plurality of in-phase signals. The phase adjusting unit is coupled to the signal generating unit and is used for adjusting the plurality of in-phase signals to generate a plurality of output signals, where all or some of the output signals have different phases. The output interface is coupled to the phase adjusting unit and is used for outputting the plurality of output signals to a plurality of signal processing units for image processing.
Abstract:
The present invention is related to a method and apparatus for a mobile unit to synchronize with the base station in WCDMA system. First, the mobile unit receives the signal transmitted from the base station. The signal includes a primary synchronization channel, a secondary synchronization channel and a common pilot channel. Then, the mobile unit obtains a sample signal and selects a part of the sample signal to be a first period signal and a second period signal. The mobile unit further synchronizes with the base station according to the first period signal, primary synchronization channel, second period signal, secondary synchronization channel and the common pilot channel.
Abstract:
A method for providing television signals is disclosed including the steps of: receiving signals utilizing a first antenna and a second antenna; generating a first signal quality indicator corresponding to signals from the first antenna; generating a second signal quality indicator corresponding to signals from the second antenna; and selectively producing only a main picture signal or the main picture signal together with a sub picture signal utilizing the signals from the first and second antennas according to the first and second signal quality indicators.
Abstract:
A driving device includes a plurality of transmitters. Each transmitter includes a first current source, a second current source, a third current source, a fourth current source, a first switch, a second switch, a third switch, a fourth switch, a fifth switch, and a sixth switch. The first and the fourth switches are controlled by a first control signal. The second and the third switches are controlled by a second control signal. The second switch is coupled to the first switch. The third switch is coupled to the first current source. The fourth switch is coupled to the third switch and the second current source. The fifth and the sixth switches are controlled respectively by a third and a fourth control signal. The fifth switch is coupled to the third current source and the first switch. The sixth switch is coupled to the second switch and the fourth current source.
Abstract:
A flat panel display comprises the following components. A display module has a lower glass substrate for fabricating thin film transistors, an upper glass substrate for fabricating a color filter, and a displaying molecule layer inserted between the lower glass substrate and the upper glass substrate. The lower glass substrate is connected electrically to a control circuit board via a flexible printed circuit board for driving the thin film transistors. And a backlight unit is fabricated beneath the display module and has a lightguide, a lamp disposed aside the lightguide to emit lights into the lightguide in the edgelight form, and a plurality of optical films disposed on the lightguide for scattering the lights emitted from the lightguide uniformly. The backlight unit comprises a sensor board disposed beneath the lightguide for receiving inputting signals from a signal stylus above the flat panel display. And the sensor board has a reflector surface layer for reflecting lights dispersed from a lower surface of the lightguide.