Abstract:
The invention provides a dynamic random access memory (DRAM) with an electrostatic discharge (ESD) region. The upper portion of the ESD plug is metal, and the lower portion of the ESD plug is polysilicon. This structure may improve the mechanical strength of the ESD region and enhance thermal conductivity from electrostatic discharging. In addition, the contact area between the ESD plugs and the substrate can be reduced without increasing aspect ratio of the ESD plugs. The described structure is completed by a low critical dimension controlled patterned photoresist, such that the processes and equipments are substantially maintained without changing by a wide margin.
Abstract:
A method for manufacturing a flash memory includes providing a substrate with a sacrificial oxide layer, a sacrificial poly-Si layer, a hard mask layer and a trench exposing part of the substrate and filled with an oxide layer, later depositing a oxide layer conformally on the sacrificial oxide layer and the oxide layer, and afterwards removing the oxide layer on the sacrificial oxide layer and on the top of the oxide layer and the sacrificial oxide layer to form a spacer as a STI oxide spacer.
Abstract:
A floating gate and fabrication method thereof. A semiconductor substrate is provided, on which an oxide layer, a first conducting layer, and a patterned hard mask layer having an opening are sequentially formed. A spacer is formed on the sidewall of the opening. A second conducting layer is formed on the hard mask layer. The second conducting layer is planarized to expose the surface of the patterned hard mask layer. The surface of the second conducting layer is oxidized to form an oxide layer. The patterned hard mask layer and the oxide layer and the first conducting layer underlying the patterned hard mask layer are removed.
Abstract:
A floating gate and fabrication method thereof. A semiconductor substrate is provided, on which an oxide layer, a first conducting layer, and a patterned hard mask layer having an opening are sequentially formed. A spacer is formed on the sidewall of the opening. A second conducting layer is formed on the hard mask layer. The second conducting layer is planarized to expose the surface of the patterned hard mask layer. The surface of the second conducting layer is oxidized to form an oxide layer. The patterned hard mask layer and the oxide layer and the first conducting layer underlying the patterned hard mask layer are removed.
Abstract:
A method for manufacturing a split-gate flash memory cell, comprising the steps of forming an active region on a semiconductor substrate; forming a buffer layer on the semiconductor substrate; forming a first dielectric layer on the buffer layer; removing part of the first dielectric layer; defining an opening; removing the buffer layer within the opening; forming a gate insulating layer and floating gates; forming a source region in the semiconductor substrate; depositing a conformal second dielectric layer on the opening; removing the buffer layer outside the first dielectric layer and the floating gates; and forming an oxide layer and control gates.
Abstract:
A method for fabricating a memory unit with T-shaped gate. A semiconductor substrate forming a dielectric layer, a first opening, and a second opening is provided in a CMOS process. A silicate glass spacer is formed on the sidewall of the first opening and is thermally oxidized to form a light doped area under the silicate glass spacer. The silicate glass spacer is removed. An insulating spacer is formed on the sidewall of the first opening. A first spacer is formed on a sidewall of the second opening. N-type conducting spacers are formed respectively on sidewalls of the insulating spacer and the first spacer. Gate dielectric layers are formed respectively in the first opening and the second opening. A P-type conducting layer fills with the first opening and the second opening, and a second spacer is formed on a sidewall of a conducting spacer of the second opening.
Abstract:
A method for fabricating a split gate flash memory cell. First, a substrate having a doped region covered by a first conductive layer is provided. A floating gate and a first insulating layer are successively formed over the substrate on both sides of the first conductive layer. Thereafter, a conformable second insulating layer and a conformable second conductive layer are successively formed on the substrate and the first insulating layer, and then a third insulating layer is formed thereon. The third insulating layer and the second conductive layer are successively etched back to expose the second insulating layer. The third insulating layer is removed using a cap layer formed on the second conductive layer as a mask to form an opening. Finally, the second conductive layer under the opening is removed to form a control gate underlying the cap layer.
Abstract:
A method for fabricating a source line of a flash memory cell. First, a substrate covered by a first insulating layer, a first conductive layer, and a second insulating layer successively is provided. Next, the second insulating layer is patterned to form an opening over the substrate and expose the first conductive layer. Next, a first spacer is formed over the sidewall of the lower opening and a second spacer is formed over the sidewall of the upper opening and the first spacer to make the opening has a “T” profile. Next, the exposed first conductive layer under the opening is removed, and a third spacer over the sidewall of the first spacer and the second spacer is formed. Finally, a source region is formed in the substrate under the opening and the opening is filled with a second conductive layer to form a source line.
Abstract:
A method for manufacturing DRAM having a redundancy circuit region. The method utilizes a laser beam permeable layer such as a silicon nitride layer to serve as a stop layer in the etching step of the passivation oxide layer. The method removes the conductive layer, serving as the upper electrode of the capacitor, in the redundancy circuit region II. The fuse of the redundancy circuit region II can thereby be easily blown by the laser beam.
Abstract:
A manufacturing method of a random access memory includes the following steps: providing a semiconductor structure having an array region and a peripheral region; forming a plurality of first trenches in the array region, and concurrently, a plurality of second trenches on the peripheral region; forming a polysilicon layer to cover the array region and the peripheral region, and the first and the second trenches are filled up with the polysilicon layer; planarizing the polysilicon layer so the remaining polysilicon layer only resides in the first and the second trenches; forming a conductive layer on the semiconductor structure; patterning the conductive layer to form a plurality of landing pads on the array region, and a plurality of bit line units on the peripheral region; and forming a plurality of capacitor units which is in electrical connection to the landing pads.