Abstract:
A framing aid for a handheld document capture device such as a digital camera, comprising two pattern generators (10,20) generating convergent patterns (14, 24) that are in register on a target object plane. Triangulation between the two pattern generators (10,20) and using superimposed or complementary patterns (14,24) ensures that the hand held device (1) is correctly arranged at a predetermined range and orientation above a document to be captured, such that the document is accurately framed within the field of view of the capture device (1).
Abstract:
The method of the invention enables a printer to interpret received page description data and to generate a series of corresponding graphics commands that enable graphic objects to be printed. During the interpreting action, memory resources are allocated for storage of the graphics commands, which are then arranged into a display list. The printer's personality maintains a measure of available memory for allocation and, upon sensing a low memory level, causes a compression of the series of graphics commands in the display list to achieve a more efficient use of the available memory assets.
Abstract:
A transaction printing device having a base with a width dimension of no greater than about 6.5 inches includes a printhead cartridge stall coupled to the base and mounted for rectilinear movement along a path of travel along the width dimension of the printing device. The stall supports from below a printhead cartridge to facilitate the ejecting of ink onto a transaction receipt having a width dimension of about 3 inches. The printhead cartridge has a generally box like shape with a front wall member having an integrally connected outwardly projecting for defining a pair of printhead linear translation reversing spaces adjacent the front wall member to facilitate reversing the linear translation of the printhead cartridge to print the transaction receipt. The method of printing the transaction receipt includes moving the printhead cartridge and a printhead wiper relative to one another in one direction along a rectilinear path of travel of substantially less than 6.5 inches to eject ink onto a portion of roll paper to facilitate the forming of the transaction receipt and to clean the printhead with the wiper. The printhead cartridge and the printhead wiper are then moved relative to one another in an opposite direction along the rectilinear path of travel to eject ink onto another portion of the roll paper to further facilitate the forming of the transaction receipt and to cleaning the printhead with the wiper. The moving of the printhead cartridge is repeated a sufficient number of times until the transaction receipt is printed.
Abstract:
A method and apparatus for developing a pixel in an image forming device includes split developing the pixel using a split sub-pixel modulation technique. Split development provides for at least two non immediately adjacent areas of the pixel to be developed more fully than an area in between the two non immediately adjacent areas. In the context of a laser printer, the laser is sub-pixel modulated at least twice upon the electrophotoconductive drum for selected pixels, thus effectuating a reduced discharge of the drum and reduced subsequent development of toner mass thereon. This controlled amount of developed toner mass reduces toner waste and toner scatter while maintaining image integrity.
Abstract:
A method and apparatus for duplex copying providing enhanced time to first copy is disclosed. The apparatus includes a scanner, a printer having a duplexer, and an information pipeline configured to process a data stream representing the image of page sides of the original document to be printed onto a single page of the copy product. The copier includes a processor , a computer readable memory, and a print element. The processor is configured to deliver the first two page sides of the original document to the printer for printing prior to the scanning of all subsequent pages of the original document.
Abstract:
The present disclosure relates to a sealing member for sealing an opening in a fluid container. The sealing member receives a hollow tubular member to establish communication between the hollow tubular member and the fluid container. The sealing member includes a resilient sealing portion configured to receive the hollow tubular member. With the hollow tubular member inserted through the resilient scaling portion a compressive seal is formed with an outer surface of the hollow tubular member to limit passage of fluid between the resilient sealing portion and the hollow tubular member. Also included is a lead-in portion on the resilient sealing portion. The lead-in portion guides the hollow tubular member through the resilient sealing portion to establish communication between the hollow tubular member and the fluid container.
Abstract:
An image forming system includes a substrate transport unit, an image forming module, an event sensing module, a heartbeat generation module, a signal detection module, and a repositioning module. The substrate transport unit may transport substrate including at least one splice along a transport path. The image forming module may form an image on the substrate. The event sensing module may detect an event and provide an event signal along a signal path in response to the event. The heartbeat generation module may provide a heartbeat signal different than the event signal along the signal path. The signal detection module may determine a presence of the event signal and an absence of the heartbeat signal. The repositioning module may move the image forming module from a first position to a second position in response to a determination of the presence of the event signal.
Abstract:
An image forming system includes a substrate transport unit, an image forming module, an event sensing module, a heartbeat generation module, a signal detection module, and a repositioning module. The substrate transport unit may transport substrate including at least one splice along a transport path. The image forming module may form an image on the substrate. The event sensing module may detect an event and provide an event signal along a signal path in response to the event. The heartbeat generation module may provide a heartbeat signal different than the event signal along the signal path. The signal detection module may determine a presence of the event signal and an absence of the heartbeat signal. The repositioning module may move the image forming module from a first position to a second position in response to a determination of the presence of the event signal.
Abstract:
Devices of a Bluetooth wireless communication system are adapted to include an L2CAP extension layer that calculates error control data for each packet of payload data. An error control data packet is transmitted immediately following each packet of payload data. The L2CAP extension layer checks incoming payload data packets using the associated error control data, to determine transmission errors such as caused by radio-frequency interference. A preferred example uses 32-bit Ethernet to generate an error control checksum, providing robust error checking for a high integrity transmission link such as between a computing device and a printer.
Abstract:
A method of determining a registration offset in a hard copy apparatus, the apparatus comprising a pen arranged to mark a print medium and a sensor arranged to detect marks on the medium along a sensor path, the method comprising the steps of: marking a alignment pattern on the medium, the pattern being at least partially located along the sensor path; detecting the position along the sensor path of a portion of the pattern; and, determining a distance by which the pattern is offset from the sensor path in a direction substantially perpendicular to the sensor path, the pattern being configured such that the detected position is indicative of the offset distance.