Abstract:
The present invention relates to a light emitting device and a method of manufacturing the light emitting device. According to the present invention, the light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane. Further, the present invention provides a light emitting device comprising a substrate formed with a plurality of light emitting cells each including an N-type semiconductor layer and a P-type semiconductor layer formed on the N-type semiconductor layer, and a submount substrate flip-chip bonded onto the substrate, wherein the N-type semiconductor layer of one light emitting cell and the P-type semiconductor layer of another adjacent light emitting cell are connected to each other, and a side surface including at least the P-type semiconductor layer of the light emitting cell has a slope of 20 to 80° from a horizontal plane. Further, the present invention is provides a method of manufacturing the light emitting device. Accordingly, there is an advantage in that the characteristics of a light emitting device such as luminous efficiency, external quantum efficiency and extraction efficiency are enhanced and the reliability is secured such that light with high luminous intensity and brightness can be emitted.
Abstract:
A donor substrate for use in an organic light emitting display comprises a base substrate and a transfer layer disposed on the base substrate. A selective heat generation structure is interposed between the base substrate and the transfer layer. The selective heat generation structure has a heat generation region from which heat is generated by light-to-heat conversion and a heat non-generation region contacting the heat generation region. By employing the donor substrate, it is possible to form minute transfer layer patterns with high accuracy without the need to accurately control the width of a laser beam. A fabrication method of an organic light emitting display comprises disposing the donor substrate on an acceptor substrate, irradiating a laser beam onto the donor substrate, and forming a transfer layer pattern on a pixel electrode of the acceptor substrate.
Abstract:
Disclosed herein is a method for preparing a porous material using nanostructures. The method comprises the steps of producing nanostructures using a porous template, dispersing the nanostructures in a source or precursor material for the porous material, aligning the nanostructures in a particular direction, and removing the nanostructures by etching. According to the method, the size, shape, orientation and regularity of pores of the porous material can be easily controlled, and the preparation of the porous material is simplified, leading to a reduction in preparation costs.Further disclosed is a porous material prepared by the method.
Abstract:
Provided are a laser irradiation apparatus and method of fabricating an organic light emitting display using the same. The laser irradiation apparatus includes a mask positioned below the laser generator, and the mask is patterned such that lengths of an upper portion and a lower portion of a mask pattern are patterned longer than a length of a middle portion of the mask pattern with respect to the scanning direction. The method of fabricating an organic light emitting display includes scanning a laser beam on a predetermined region of the donor substrate using the laser irradiation apparatus to form an organic layer pattern on the substrate. When the organic layer pattern is formed using a laser induced thermal imaging (LITI) method, the transfer may be carried out using a laser beam having low energy, laser beam efficiency may be enhanced, the organic layer may be less damaged, and the quality of the organic layer pattern to be transferred may also be enhanced.
Abstract:
A laser irradiation apparatus and method of fabricating an organic light emitting display using the same are provided. The laser irradiation apparatus includes: a laser generator; a mask having means for changing a propagation path of a laser beam; and a projection lens. The method of fabricating an organic light emitting display includes: irradiating a laser beam on an edge of an irradiated region of a donor substrate using the laser irradiation apparatus with high intensity to form an organic layer pattern on a substrate. The laser beam having low intensity can perform a transfer process to improve laser beam efficiency. In addition, it is possible to reduce damage on the organic layer, and improve quality of the transferred organic layer pattern.
Abstract:
A service area notification method in a mobile terminal wherein a current received signal strength of the mobile terminal is detected, and a service area corresponding to the current received signal strength is determined from among a plurality of service areas distinguished according to received signal strength. The user is then notified of the determined service area and the service types available in the service area.
Abstract:
Provided are a charge trap memory device including a substrate and a gate structure including a charge trapping layer formed of a composite of nanoparticles, and a method of manufacturing the charge trap memory device.
Abstract:
The present invention relates to a light emitting device in which light emitting cells of a first light emitting cell block are connected in parallel to light emitting cells of a second light emitting cell block corresponding thereto. A light emitting device of the present invention comprises a substrate, and first and second light emitting cell blocks formed on the substrate and having a plurality of light emitting cells electrically connected in series to one another, respectively. Each of the light emitting cells has an N-electrode and a P-electrode. A P-electrode at one end of the first light emitting cell block is connected to an N-electrode at one end of the second light emitting cell block, and an N-electrode at the other end of the first light emitting cell block is connected to a P-electrode at the other end of the second light emitting cell block. The P-electrode of each of the light emitting cells of the first light emitting cell block and the P-electrode of each of the light emitting cells of the second light emitting cell block corresponding thereto, or the N-electrode of each of the light emitting cells of the first light emitting cell block and the N-electrode of each of the light emitting cells of the second light emitting cell block corresponding thereto are electrically connected to each other. In the light emitting device of the present invention, the light emitting cells of the first light emitting cell block and the light emitting cells of the second light emitting cell block corresponding thereto are respectively connected in parallel so that a current can cross the light emitting cells of the first and second light emitting cell blocks. Thus, even though a leakage current occurs in some of light emitting cells, the current is allowed to cross light emitting cells connected in another direction, thereby preventing overload on some of the light emitting cells due to the leakage current and ensuring uniform light emission and prolonged life span in the AC light emitting device.
Abstract:
Disclosed is a printed circuit board, on which a holder for fixing a lamp is mounted, is disposed on an upper surface of a bottom cover, and an inverter supplying a driving voltage to the lamp is disposed on a lower surface of the bottom cover. The printed circuit board is electrically connected to the holder as a conductive pattern is embedded in the printed circuit board. The connector is directly mounted on the inverter, or it is connected to the inverter via a wire. In this case, the connector is also connected to the printed circuit board. Therefore, the connector of the inverter and the connector of the printed circuit board are electrically connected.
Abstract:
A curve designing system/method is provided. When similar curves are to be generated by evenly mixing features of given sample curves, the method of the present invention can control the extent of mixing features, smoothness, and size. The technology of the present invention can be applied to designing curve and curved surface in the fields of computer graphics and Computer-Aided Design (CAD).