Abstract:
An automatic transmission with a reverse inhibit feedback passage between front and rear oil sumps. The transmission includes a case, a passage in the case for returning oil to the front sump from the rear sump and a flap valve for allowing the flow from rear sump to front sump while inhibiting oil flow in the reverse direction.
Abstract:
Provided is an artwork that enables various abstract expressions and can reduce transport cost. This artwork is constituted by a combination of a plurality of parts having various shapes. Each part is provided with a joint portion. The joint portion has a cylindrical body having a prescribed length and a continuous thread bolt attached to an outer peripheral surface of the cylindrical body. The continuous thread bolt is fixed into a hole formed in the part, with the outer peripheral surface of the cylindrical body attached in contact with or close to the part. The parts are joinable to and separable from each other by contacting the joint portions of the parts to each other at end surfaces of the cylindrical body and passing a shaft through the cylindrical bodies.
Abstract:
An optical transmission system transmits an optical signal of multi-level modulation. In a transmitter module, a data string in a specified frame is rearranged into a plurality of logical lanes. A lane ID, which specifies in what logical lane out of the plurality of logical lanes a start of the data string is arranged, is assigned to a non-scrambled area in an overhead portion of the frame. The lane ID corresponding to one of the plurality of logical lanes is different from the lane IDs corresponding to the other remaining logical lanes. The optical signal is generated using the data string rearranged into the plurality of logical lanes. In a receiver, the lane ID is detected according to a majority method. The inversion of bits and the swapping of lanes are detected using the lane ID and compensated.
Abstract:
An optical receiver includes: a waveform distortion compensator to perform an operation on digital signal representing an optical signal generated by an A/D converter to compensate for waveform distortion of the optical signal; a phase detector to generate phase information representing sampling phase of the A/D converter; a phase adjuster to generate digital signal representing an optical signal in which the sampling phase of the A/D converter is adjusted from an output signal of the waveform distortion compensator using the phase information; a demodulator to generate a demodulated signal from the output signal of the phase adjuster; a phase controller to control the sampling phase of the A/D converter; a peak detector to detect a peak value of the phase information while the sampling phase of the A/D converter is controlled by the phase controller; and a compensation controller to control the waveform distortion compensator using the peak value.
Abstract:
An optical transmission system transmits an optical signal of multi-level modulation. In a transmitter module, a data string in a specified frame is rearranged into a plurality of logical lanes. A lane ID, which specifies in what logical lane out of the plurality of logical lanes a start of the data string is arranged, is assigned to a non-scrambled area in an overhead portion of the frame. The lane ID corresponding to one of the plurality of logical lanes is different from the lane IDs corresponding to the other remaining logical lanes. The optical signal is generated using the data string rearranged into the plurality of logical lanes. In a receiver, the lane ID is detected according to a majority method. The inversion of bits and the swapping of lanes are detected using the lane ID and compensated.
Abstract:
A frame generating device includes an inserting portion and an accommodating portion. The inserting portion inserts a first fixed stuff byte and a second fixed stuff byte into a payload area of an OTU frame, the first fixed stuff byte being of (8+10n (“n” is zero or a given positive integer))×4 rows, the second fixed stuff byte being of a given byte×4 rows, the given byte being equal to zero or more and being equal to (24−10n) or more. The accommodating portion accommodates Ethernet signal in the payload area other than the first fixed stuff byte and the second fixed stuff byte.
Abstract:
A pump probe measuring device (1) includes an ultrashort optical pulse laser generator (11) for generating a first ultrashort optical pulse train, which becomes a pump light, and a second ultrashort optical pulse train, which becomes a probe light, a delay time adjusting unit (15) for adjusting a delay time between ultrashort optical pulse trains, a first pulse picker and a second pulse picker (13, 14) for accepting each of the first and the second ultrashort optical pulse trains and allowing only one pulse to be transmitted at an arbitrary repetition periodicity, thus reducing the effective repetition frequency of the optical pulses, a delay time modulation unit (10) for periodically changing a position through which pulses are transmitted by the first and the second pulse pickers (13, 14), an irradiation optical system (16) for applying pump light and probe light to a sample (19), a measuring unit (20) for detecting probe signals from a sample (19), and a lock-in amplifier (18).
Abstract:
A pump probe measuring device (1) includes an ultrashort optical pulse laser generator (11) for generating a first ultrashort optical pulse train, which becomes a pump light, and a second ultrashort optical pulse train, which becomes a probe light, a delay time adjusting unit (15) for adjusting a delay time between ultrashort optical pulse trains, a first pulse picker and a second pulse picker (13, 14) for accepting each of the first and the second ultrashort optical pulse trains and allowing only one pulse to be transmitted at an arbitrary repetition periodicity, thus reducing the effective repetition frequency of the optical pulses, a delay time modulation unit (10) for periodically changing a position through which pulses are transmitted by the first and the second pulse pickers (13, 14), an irradiation optical system (16) for applying pump light and probe light to a sample (19), a measuring unit (20) for detecting probe signals from a sample (19), and a lock-in amplifier (18).
Abstract:
A frame generating device includes an inserting portion and an accommodating portion. The inserting portion inserts a first fixed stuff byte and a second fixed stuff byte into a payload area of an OTU frame, the first fixed stuff byte being of (8+10n (“n” is zero or a given positive integer))×4 rows, the second fixed stuff byte being of a given byte×4 rows, the given byte being equal to zero or more and being equal to (24−10n) or more. The accommodating portion accommodates Ethernet signal in the payload area other than the first fixed stuff byte and the second fixed stuff byte.
Abstract:
The clamping band is capable of reducing a diameter with an ordinary tool or without the tool and improving working efficiency of clamping object members. The clamping band comprises: a first hook including a first projection, which can be engaged with the tool, and a second projection, which prevents rotation of a ring-shaped band member when a lever is pressed onto an external member; a second hook for engaging with the tool, the second hook being outwardly projected from the band member and located close to a position on which the lever is laid; and a clipping member for clipping and holding the lever in a laid state, the clipping member being located close to buckles.