Abstract:
An electrochemical device is disclosed. The electrochemical device includes a first transparent conductive layer, an electrochromic layer overlying the first transparent conductive layer, a counter electrode layer overlying the electrochromic layer, a second transparent conductive layer, and a switching speed parameter of not greater than 0.68 s/mm at 23° C.
Abstract:
An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different respective sheet resistances of separate conductive layer regions. Sheet resistance of a conductive layer region can be associated with a transmission level to which a corresponding EC stack region can be switched, and a conductive layer with separate regions having separate sheet resistances causes corresponding EC stack regions to switch to different transmission levels. Sheet resistance in a conductive layer region can be adjusted via various processes, including introducing various chemical species into the conductive layer region to adjust a chemical species distribution in the region, where the chemical species distribution is associated with the sheet resistance of the region, heating conductive layer regions to induce oxidation of the region, adjusting the thickness of a conductive layer region, etc.
Abstract:
In one aspect of the present invention is a substrate comprising multiple, independently controllable electrochromic zones, wherein each of the electrochromic zones share a common, continuous bus bar. In one embodiment, of the electrochromic zones are not completely isolated from each other. In another embodiment, each of the electrochromic zones have the same surface area. In another embodiment, each of the electrochromic zones have a different surface area.
Abstract:
In one aspect, the present invention is a system comprising an electrochromic device having at least one bus bar and a color obscuration material wherein the at least one bus bar is coated with an over-coating material that is 1) substantially non-porous; and 2) substantially color-matched to one of said color obscuration material, a spacer, or a polymer seal.
Abstract:
An insulated glazing unit is provided. The unit includes a spacer frame separating a pair of substrates. The spacer frame has a length and a width transverse to the length. The unit further includes a conductive element passing through the width of the spacer frame. The unit further includes a first conductive component within the spacer frame. The first conductive component is in electrical communication with the conductive element. The conductive element is adapted for electrical communication with a second conductive component on a side of the width of the spacer frame opposite the first conductive component.
Abstract:
Several of the films that comprise various energy producing or control devices, for example, electrochromic devices, lithium batteries, and photovoltaic cells, are sensitive to moisture in some way. They may be especially vulnerable to moisture at particular stages during their fabrication. It may also be highly desirable during fabrication to be able to wash particulates from the surface. The particulates may be generated some aspect of the fabrication process, or they may arise from the environment in which the fabrication takes place. This invention shows ways to remove said particles from the surface without incurring the damage associated with typical washing processes, resulting in higher manufacturing yields and better device performance.
Abstract:
A control device for controlling the transmittance of an electrochromic device includes a power source, an electrical load sensing circuit, and a processor electrically coupled to the electrical load sensing circuit and a power source. The processor is configured to receive a measured electrical load value from the electrical load sensing circuit indicating an electrical property of the electrochromic device, further configured to control one or more properties of the electrochromic device by controlling the amount of current or voltage supplied from the power source to the electrochromic device, and yet further configured to vary a property of the electrochromic device while maintaining the electrochromic device at a substantially consistent transmissivity.
Abstract:
The present disclosure provides for a method of controlling a plurality of independently controllable sections of one or more electrochromic devices belonging to a common interior space to provide lighting having a substantially color neutral or aesthetically pleasing spectrum to the interior space. The method comprises receiving a desired illuminance input indicating an amount of lighting desired in the interior space, and a neutral lighting input indicating a quantifiable amount of the sections of the electrochromic devices to be set to a high transmittance state. One or more sections of the electrochromic devices are selected in accordance with the neutral lighting input. The selected sections of the electrochromic device are set to the high transmittance state. The one or more electrochromic devices collectively transmit an amount of light into the interior space in accordance with the desired illuminance input.
Abstract:
Compounds having the formula LiaEC1M1bM2cOx, wherein “a” ranges from about 0.5 to about 3; b+c ranges from about 0.1 to about 1; c/(b+c) ranges from about 0.1 to about 0.9; and wherein x is about 0.1 to about 50, are disclosed. Methods of making these compounds as well as their use in thin film materials and electrochromic devices are also disclosed.
Abstract translation:具有式LiaEC1M1bM2cOx的化合物,其中“a”为约0.5至约3; b + c的范围为约0.1至约1; c /(b + c)的范围为约0.1至约0.9; 并且其中x为约0.1至约50。 还公开了制备这些化合物的方法及其在薄膜材料和电致变色装置中的应用。
Abstract:
A system for providing an electrical interface across a sealed boundary may include a frame in sealed engagement with at least a portion of a substrate. The substrate may be in communication with an electrochromic device. The system may further include first and second conduits. The first conduit may be on a first side of the substrate and a second conduit may be on a second side of the substrate. The second conduit may be in communication with the first conduit through at least one of the seal, a space between the seal and the frame, and a space between the seal and the substrate.